• Title/Summary/Keyword: Heavy ion irradiation

Search Result 33, Processing Time 0.018 seconds

Preparation of Acrylic Acid Grafted Polypropylene by Electron Beam Irradiation and Heavy Metal Ion Adsorption Property (전자선 조사를 이용한 아크릴산이 그라프트된 폴리프로필렌의 제조 및 중금속 이온 흡착 특성)

  • Cheon, Ja young;Jeun, Joon-pyo
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.335-341
    • /
    • 2019
  • In this study, an acrylic acid (AAc) was grafted on a polypropylene (PP) nonwoven fabric using electron beam irradiation. Electron beam grafting was carried out under various conditions to produce AAc grafted PP (PP-g-AAc) nonwoven fabric having a grafting yield of about 50% at radiation dose of 100 kGy and a monomer concentration of 60%. The physical and chemical properties of PP-g-AAc nonwoven fabric were evaluated by SEM, ATR-FTIR, thermal analysis and tensile strength. The morphology of PP and PP-g-AAc nonwoven fabric confirmed by SEM showed no significant change, and it was judged that AAc was introduced into PP nonwoven fabric from ATR-FTIR. PP-g-AAc nonwoven fabric showed an increase in tensile strength and a decrease in tensile strain compared to PP nonwoven fabric. However, since change of value is not significant, it is considered that there is no significant influence on the physical characterization. Adsorption experiments of PP-g-AAc nonwoven fabric on various ions showed selective adsorption behavior for lead ion. In conclusion, the electron beam radiation-induced PP-g-AAc nonwoven fabric is expected to be applied as an effective adsorbent for the adsorption of lead ions.

Characterization of in vitro Growth and Differentiation of an Albino Mutant of Nicotiana tobacum L. (Albino 담배 변이체의 기내 생장과 기내 분화의 특성)

  • ;;;;;;Yoshida Shigeo
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.197-203
    • /
    • 1999
  • The albino plants of tobacco (Nicotiana tobacum L. cv. BY-4) were isolated from seed populations that were induced by heavy-ion ($^{14}N$) beam irradiation to proembryo and the in vitro growth and differentiation have been characterized. The in vitro cultured albino plants showed significant reduction of chlorophyll content and possessed larger number of stomata on both upper and lower epidermis than that of wild-type plants. Stem growth of the mutants remained dwarfed, however, the internode recovered its normal length after GA$_3$ treatment (10.0mg/L) on the MS medium containing sucrose under continuous light. When explants of leaf blades of albino plants were cultured, multiple shoots formed directly on MS medium containing 1.0mg/L of BAP or kinetin and a large number of calli were induced on the MS medium containing 1.0mg/L NAA or 1.0 mg/L 2,4-D. The albino calli regenerated multiple albino plantlets in the MS medium containing 0.1mg/L NAA + 1.0 mg/L BAP. No significant differences between the wild-type and albino plants were detected in the multiple shoot induction, callus formation from the explants and the plantlets regeneration from calli. In addition, albino plants have a similar organogenesis Pattern to that of the wild-type in the media with different combinations of NAA (0 to 5.0mg/L) and BAP (0 to 5.0mg/L) treatment. These results indicate that the albino mutant has the same normal regeneration ability as that of wild-type, although the mutant has lost functions in photosynthesis, such as pigmentation.

  • PDF

Effect of Halophilic Bacterium, Haloarcula vallismortis, Extract on UV-induced Skin Change (호염 미생물(Haloarcula vallismortis) 용해물의 자외선유발 피부변화에 대한 효과)

  • Kim, Ji Hyung;Shin, Jae Young;Hwang, Seung Jin;Kim, Yun Sun;Kim, Yoo Mi;Gil, So Yeon;Jin, Mu Hyun;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.341-350
    • /
    • 2015
  • Skin carrys out protective role against harmful outer environment assaults including ultraviolet radiation, heavy metals and oxides. Especially, ultraviolet-B (UVB) light causes inflammatory reactions in skin such as sun burn and erythma and stimulates melanin pigmentation. Furthermore, the influx of UVB into skin cells causes DNA damage in keratinocytes and dermal fibroblasts, inhibition of extracellular matrix (ECM) synthesis which leads to a decrease in elasticity of skin and wrinkle formation. It also damages dermal connective tissue and disrupts the skin barrier function. Prolonged exposure of human skin to UVB light is well known to trigger severe skin lesions such as cell death and carcinogenesis. Haloarcula vallismortis is a halophilic microorganism isolated from the Dead Sea, Its growth characteristics have not been studied in detail yet. It generally grows at salinity more than 10%, but the actual growth salinity usually ranges between 20 to 25%. Because H. vallismortis is found mainly in saltern or salt lakes, there could exist defense mechanisms against strong sunlight. One of them is generation of additional ATP using halorhodopsin which absorbs photons and produces energy by potential difference formed by opening the chloride ion channel. It often shows a color of pink or red because of their high content of carotenoid pigments and it is considered to act as a defense mechanism against intense UV irradiation. In this study, the anti-inflammatory effect of the halophilic microorganism, H. vallismortis, extract was investigated. It was found that H. vallismortis extract had protective effect on DNA damage induced by UV irradiation. These results suggest that the extract of halophilic bacterium, H. vallismortis could be used as a bio-sunscreen or natural sunscreen which ameliorate the harmful effects of UV light with its anti-inflammatory and DNA protective properties.