• Title/Summary/Keyword: Heavy ion irradiation

Search Result 33, Processing Time 0.026 seconds

Growth and DNA Alteration of Heavy-ion Beam Irradiated Tobacco(Nicotiana plumbaginifolia) Plant (중이온 빔조사 담배(Nicotiana plumbaginifolia) 식물체의 생장과 DNA 변이)

  • Lyu Jae-Il;Kim Min-Su;Tomoko Abe;Lee Hyo-Yeon;Yang Deok-Chun;Bae Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.18 no.1
    • /
    • pp.169-178
    • /
    • 2005
  • Effects of heavy-ion beam$(^{20}Ne)$ irradiation on growth and DNA alteration of tobacco plants were investigated. Seed germination and plant height were decresed as the ion-beam intensity was increased. However, the bolting and flowering were promoted by the low intensities of 5 Gy to 10 Gy treatment. Out of the 100 primers screened, 59 primers generated 336 DNA fragments by RAPD analysis, and one specific DNA fragment that amplified in control but not in the ion-beam irradiated plants was observed. By AFLP analysis, DNA fragment difference related to the ion-beam treatment was not detected but observed among the plant bodys.

Monte Carlo Calculation for Production Cross-Sections of Projectile's Isotopes from Therapeutic Carbon and Helium Ion Beams in Different Materials

  • Quazi Muhammad Rashed Nizam;Asif Ahmed;Iftekhar Ahmed
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.204-212
    • /
    • 2023
  • Background: Isotopes of the projectile may be produced along the beam path during the irradiation of a target by a heavy ion due to inelastic interactions with the media. This study analyzed the production cross-section of carbon (C) and Helium (He) projectile's isotopes resulting from the interactions of these beams with different materials along the beam path. Materials and Methods: In this study, we transport C and He ion beams through different materials. This transportation was made by the Monte Carlo simulation. Particle and Heavy Ion Transport code System (PHITS) has been used for this calculation. Results and Discussion: It has been found that 10C, 11C, and 13C from the 12C ion beam and 3He from the 4He ion beam are significant projectile's isotopes that have higher flux than other isotopes of these projectiles. The 4He ion beam has a higher projectile's isotope production cross-section along the beam path, which adds more impurities to the beam than the 12C ion beam. These projectile's isotopes from both the 12C and 4He ion beams have higher production cross-sections in hydrogenous materials like water or polyethylene. Conclusion: It is important to distinguish these projectile's isotopes from the primary beam particles to obtain a precise and accurate cross-section result by minimizing the error during measurement with a nuclear track detector. This study will show the trend of the production probability of projectile's isotopes for these ion beams.

High energy swift heavy ion irradiation and annealing effects on DC electrical characteristics of 200 GHz SiGe HBTs

  • Hegde, Vinayakprasanna N.;Praveen, K.C.;Pradeep, T.M.;Pushpa, N.;Cressler, John D.;Tripathi, Ambuj;Asokan, K.;Prakash, A.P. Gnana
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1428-1435
    • /
    • 2019
  • The total ionizing dose (TID) and non ionizing energy loss (NIEL) effects of 100 MeV phosphorous ($P^{7+}$) and 80 MeV nitrogen ($N^{6+}$) ions on 200 GHz silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were examined in the total dose range from 1 to 100 Mrad(Si). The in-situ I-V characteristics like Gummel characteristics, excess base current (${\Delta}I_B$), net oxide trapped charge ($N_{OX}$), current gain ($h_{FE}$), avalanche multiplication (M-1), neutral base recombination (NBR) and output characteristics ($I_C-V_{CE}$) were analysed before and after irradiation. The significant degradation in device parameters was observed after $100MeV\;P^{7+}$ and $80MeV\;N^{6+}$ ion irradiation. The $100MeV\;P^{7+}$ ions create more damage in the SiGe HBT structure and in turn degrade the electrical characteristics of SiGe HBTs more when compared to $80MeV\;N^{6+}$. The SiGe HBTs irradiated up to 100 Mrad of total dose were annealed from $50^{\circ}C$ to $400^{\circ}C$ in different steps for 30 min duration in order to study the recovery of electrical characteristics. The recovery factors (RFs) are employed to analyse the contribution of room temperature and isochronal annealing in total recovery.

Proposal and Development of A Cylinder Type Liquid Variable Compensator for Radiation Therapy

  • Ochiai, Makoto;Takahashi, Seiji;Takada, Yuusuke;Hayakawa, Yoshinori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.222-224
    • /
    • 2002
  • In proton and heavy ion radiotherapy, compensators are required to modify the energy of heavy ion, to compensate the local difference of tumor depth. Conventional compensators have to be created, exchanged, and stored for each patient and for each irradiation directions. A Cylinder Type Liquid Variable Compensator is and is under development. Hexagonal cylinders will be arranged in honeycomb structure. In which air and fluid are divided by hexagonal pistons. The position of each piston will be changed in each cylinder for adjusting the thickness of fluid for variable compensator. The location of each hexagonal piston is determined by each controlling cylinder connected to the hexagonal cylinder by inlet pipes of fluid. Each controlling cylinder includes controlling a piston, which is moved mechanically. Each controlling cylinder is to be moved by a motor driven by a computer.

  • PDF

Dose Distribution of $^{11}C$ Beams for Spot Scanning Radiotherapy

  • Urakabe, Eriko;Kanai, Tatsuaki;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Noda, Koji;Tomitani, Takehiro;Suda, Mitsuru;Mizuno, Hideyuki;Iseki, Yasushi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.202-205
    • /
    • 2002
  • This paper describes the spot scanning with $^{11}$ C beams for the Heavy Ion Medical Accelerator in Chiba (HIMAC). The concave-shaped irradiation field was optimized and the dose distribution was measured by 128-ch ionization chamber. Because of the wide momentum spread inherent in $^{11}$ C beams, the dispersion caused from the beam line and the scanning magnets should be taken into account to calculate the dose distribution of $^{11}$ C beams and their irradiated field. The reconstructed dose distribution is in good agreement with the experimental results.

  • PDF

Evolution of the Vortex Melting Line with Irradiation Induced Defects

  • Kwok, Wai-Kwong;L. M. Paulius;Christophe Marcenat;R. J. Olsson;G. Karapetrov
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2001
  • Our experimental research focuses on manipulating pinning deflects to alter the phase diagram of vortex matter, creating new vortex phases. Vortex matter offers a unique opportunity for creating and studying these novel phase transitions through precise control of thermal, pinning and elastic energies. The vortex melting transition in untwinned YB $a_2$C $u_3$ $O_{7-}$ $\delta$/ crystals is investigated in the presence of disorder induced by particle irradiation. We focus on the low disorder regime, where a glassy state and a lattice state can be realized in the same phase diagram. We follow the evolution of the first order vortex melting transition line into a continuous transition line as disorder is increased by irradiation. The transformation is marked by an upward shift in the lower critical point on the melting line. With columnar deflects induced by heavy ion irradiation, we find a second order Bose glass transition line separating the vortex liquid from a Bose glass below the lower critical point. Furthermore, we find an upper threshold of columnar defect concentration beyond which the lower critical point and the first order melting line disappear together. With point deflect clusters induced by proton irradiation, we find evidence for a continuous thermodynamic transition below the lower critical point..

  • PDF

Growth Retardation and Death of Rice Plants Irradiated with Carbon Ion Beams Is Preceded by Very Early Dose- and Time-dependent Gene Expression Changes

  • Rakwal, Randeep;Kimura, Shinzo;Shibato, Junko;Nojima, Kumie;Kim, Yeon-Ki;Nahm, Baek Hie;Jwa, Nam-Soo;Endo, Satoru;Tanaka, Kenichi;Iwahashi, Hitoshi
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.272-278
    • /
    • 2008
  • The carbon-ion beam (CIB) generated by the heavy-ion medical accelerator in Chiba (HIMAC) was targeted to 7-day-old rice. Physiological parameters such as growth, and gene expression profiles were examined immediately after CIB irradiation. Dose-dependent growth suppression was seen three days post-irradiation (PI), and all the irradiated plants died by 15 days PI. Microarray (Agilent rice 22K) analysis of the plants immediately after irradiation (iai) revealed effects on gene expression at 270 Gy; 353 genes were up-regulated and 87 down-regulated. Exactly the same set of genes was affected at 90 Gy. Among the highly induced genes were genes involved in information storage and processing, cellular processes and signaling, and metabolism. RT-PCR analysis confirmed the microarray data.

A SOLUTION TO THE PROBLEM WITH ABSORBED DOSE

  • Braby, Leslie A.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.533-538
    • /
    • 2008
  • In some situations, for example at very low doses, in microbeam irradiation experiments, or around high energy heavy ion tracks, use of the absorbed dose to describe the energy transferred to the irradiated target can be misleading. Since absorbed dose is the expected value of energy per mass it takes into account all of the targets which do not have any energy deposition. In many situations that results in numerical values, in Joules per kg, which are much less than the energy deposited in targets that have been crossed by a charged particle track. This can lead to confusion about the biochemical processes that lead to the consequences of irradiation. There are a few alternative approaches to describing radiation that avoid this potential confusion. Examples of specific situations that can lead to confusion are given. It is concluded that using the particle radiance spectrum and the exposure time, instead of absorbed dose, to describe these irradiations minimizes the potential for confusion about the actual nature of the energy deposition.

Mechanistic Studies on the Anormalous Photocycloaddition Reaction of 5-Styryl-1,3-dimethyluracil and 2,3-Dimethyl-2-butene: Formation of the “Apparent Forbidden” [$_\pi4_s + _\pi2_s$] Cycloadduct

  • Eun Ju Shin;Ho Kwon Kang;Sang Chul Shim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.434-437
    • /
    • 1991
  • Irradiation of 5-styryl-1,3-dimethyluracil (5-SDU) with 2,3-dimethyl-2-butene (DMB) gives a [4+2] cycloadduct which is converted into a [2+2] cycloadduct on the prolonged irradiation. Triplet sensitization, quenching, and external heavy atom effect on the [4+2] photocycloaddition reaction demonstrate the singlet pathway and salt effect excludes a radical ion pair precursor possibility. Polar solvents increase the reaction efficiency implying a polar exciplex involvement in the [4+2] photocycloaddition reaction. Inverse temperature dependence both on the reaction and DMB fluorescence quenching of 5-SDU indicates the presence of a singlet exciplex intermediate.

Irradiation-Induced Electronic Structure Modifications in ZnO Thin Films Studied by X-Ray Absorption Spectroscopy

  • Gautam, Sanjeev;Yang, Bum Jin;Lee, Yunju;Jung, Ildoo;Won, Sung Ok;Song, Jonghan;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.456-456
    • /
    • 2013
  • We report the modifications in the electronic structureof ZnO thin films induced by swift heavy ion (SHI) irradiated ZnO thin films by using near edge X-ray absorption fine structure (NEXAFS) spectroscopy at O K-edge was performed at BL10D XAS-KIST beamline at Pohang Accelerator Lab (PAL). ZnO films of 250 nm thickness oriented in [200] plane deposited by RF magnetron sputtering using equal $Ar:O_2$ atmosphere and air annealed at $500^{\circ}C$ for 6 hours for stability were irradiated with 120 MeV Au and 100 MeV O beams separately with different doses ranging from $1{\times}10^{11}$ to $5{\times}10^{12}$ ions/$cm^2$. High Resolution X-ray diffraction and NEXAFS analysis indicates significant changes in the electronic structure and the SHI effect is different for Ag and O-beams. The NEXAFS measurements provide direct evidence of O 2p and Zn 3d orbital hybridization. The NEXAFS results will be presented in detail.

  • PDF