• Title/Summary/Keyword: Heavy fuel Oil

Search Result 170, Processing Time 0.031 seconds

Study on the Combustion Characteristics of a Small-Scale Orimulsion Boiler (소형 오리멀젼 보일러의 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Choi, Young-Chan;Lee, Jae-Gu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1081-1089
    • /
    • 2005
  • In order to examine the application feasibility of Orimulsion fuel in a commercial boiler using heavy fuel oil, a numerical and experimental research efforts have been made especially to figure out the fundamental combustion characteristics of this fuel in a small-scale boiler. One of the notable combustion features of Orimulsion fuel is the delayed appearance of flame location with the flame shape of rather broad distribution, which is found experimentally and confirmed by numerical calculation. This kind of flame characteristics is considered due to the high moisture content included inherently in the process of Orimulsion manufacture together with micro-explosion by the existence of fine water droplets. In order to investigate the effect on the combustion characteristics of Orimulsion, a series of parametric investigation have been made in terms of important design and operational variables such as injected amount of fuel, types of atomization fluid, and phonemenological radiation model employed in the calculation, etc. The delayed feature of peak flame can be alleviated by the adjustment of the flow rate of injected fuel and the generating features of CO, $SO_2$ and NO gases are also evaluated in the boiler. When the steam injection as atomizing fluid is used, the combustion process is stabilized with the reduced region of high flame temperature. In general, the calculation results are physically acceptable and consistent but some refinements of phenomenological models are necessary for the better resolution of pollutant formation. From the results of this small-scale Orimulsion boiler, it is believed that a number of useful information are obtained with the working computer program for the near future application of Orimulsion fuel to a conventional boiler.

A study on the RDF(Refuse Derived Fuel) making process of Livestock manure sludge by oil-drying method (유중건조를 이용한 축산분뇨슬러지의 고형연료화 공정 연구)

  • Lee, Junho;Park, Soyeon;Lee, Kyeongho;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.294-301
    • /
    • 2017
  • In this study, we found the optimal manufacturing conditions of livestock manure sludge RDF with the oil-drying method. We performed oil evaporation, oil drying and pelletizing of the sludge to evaluate the value of the product (sludge RDF), and measured the performance of the product using calorimeter and PXRF equipment. Also, we conducted the calorie comparison test between sludge RDF manufactured in this study and wood RDF generally used in the field. Experimental results showed that 30g of the sludge treated by vegetable oil at $130^{\circ}C$ for 25 minutes were the optimal conditions to make the sludge RDF (considering the aspects of eco-friendly and mass production). The caloric value of the sludge RDF manufactured in this study was 5211kcal/kg which is higher than that of wood RDF used widely in the market. Finally, PXRF results showed sludge RDF contains no heavy metals with the exception of sulfur. Therefore, we recommend more study about the sulfur control process for future development of the industrial manufacturing process.

Degradation Properties and Production of Fuels from Hemicellulose by Pyrolysis-liquefaction (열분해액화반응에 의한 헤미셀룰로오스의 분해특성 및 연료물질 생성)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.199-204
    • /
    • 2008
  • Hemicellulose, consisteing of pentose as xylose and mannose, is usable as high octane fuels and heavy oil additives if depolymerized to monomer unit. In this study, thermochemical degradation by pyrolysis-liquefaction of hemicellulose, the effects of reaction temperature, conversion yield, degradation properties and degradation products were investigated. Experiments were performed in a tube reactor by varying reaction temperatures from $200^{\circ}C$ to $400^{\circ}C$ at 40 min of reaction time. The liquid products from pyrolysis-liquefaction of hemicellulose contained various kinds of ketones. Ketones, as 2,3-dimethyl-2-cyclopenten-1-one, 2,3,4-trimethyl-2-cyclopentan-1-one, and 2-methyl-cyclopentanone, could be used as high-octane-value fuels and fuel additives. However, phenols are not valuable as fuels. Combustion heating value of liquid products obtained from thermochemical conversion processes of hemicellulose was in the range of 6,680~7,170 cal/g. After 40 min of reaction at $400^{\circ}C$ in pyrolysis-liquefaction of hemicellulose, the energy yield and mass yield were as high as 72.2% and 41.2 g oil/100 g raw material, respectively.

Trace Element Analysis and Source Assessment of Household Dust in Daegu, Korea (대구지역 일반주택의 축적먼지 중 미량원소성분 분석과 오염원 평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Jung, Yeoun-Wook;Yoon, Ho-Suk;Kwak, Jin-Hee;Han, Jeong-Uk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-78
    • /
    • 2010
  • In order to investigate the degree of household dust contamination, 48 samples of household dust (24 from urban area and 24 from rural area) in Daegu city were collected in vacuum cleaner during January to February 2009. Samples were sieved below 100 ${\mu}m$, and 14 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, Zn) were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, and V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from urban anthropogenic sources. Household dust in urban area was more affected by anthropogenic sources compared with that of rural area. Pollution index of heavy metals revealed that urban area was 1.8 times more contaminated with heavy metal components than rural area. The correlation analysis among trace elements indicated that components were correlated with natural sources-natural sources (Al-Mg, Al-Mn, Fe-Mn) and natural sources-anthropogenic sources (Al-V, Fe-Cr, V-Mn) in both urban area and rural area. Trace element components of rural area were more correlated than those of urban area. Houses that use oil for heating fuel had relatively higher contents of heavy metals rather than those using gas or electricity for heating fuel. Houses with children also had higher contents of heavy metals. In addition, the age of houses was found to influence the heavy metal levels in household dusts, with older houses (>10years) having higher concentrations than newer houses (<10years) and houses located near the major road (<10 m) were found to have relatively higher heavy metal levels in household dust.

Investigation of Plume Opacity Induced by the Combustion of Orimulsion (오리멀젼 연소로 인한 가시백연의 원인 규명)

  • Kim, Young-Hun;Kim, Jong-Ho;Joo, Ji-Bong;Lee, Jeong-Jin;Kim, Jin-Soo;Kwak, Byung-Kyu;Jeong, Jin-Heun;Park, Soong-Keun;Yi, Jong-Heop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.297-303
    • /
    • 2007
  • Orimulsion, a bitumen-in-water emulsified fuel, has been used throughout the world as a substitute fuel for heavy oil and coal. Orimulsion has relatively high levels of sulfur, nickel, and vanadium, compared to other fuel oils and coals, and has been the subject of much debate regarding the environmental impacts. In Korea, Y power plant has operated boilers with Orimulsion as a fuel, and they has some drawbacks during the plant operation, such as plume opacity. In this study, we investigated the cause of formation mechanism and factors for the plume opacity by investigating the operation data, and measuring the particle size distribution at EP(Electrostatic Precipitator), FGD(Fuel Gas Desulfurization) and TMS(Telecommunications Management System) units. Resulting data showed the primary particles below 1 ${\mu}m$ formed were regrown by the recombination of $SO_3$ in wet-limestone FGD process, and thus the secondary particles are induced to cause the plume opacity.

CHEMICAL COMPATIBILITY OF SOIL-BENTONITE CUT-OFF WALL FOR IN-SITU GEOENVIRONMENTAL CONTAINMENT

  • Inui, Toru;Takai, Atsushi;Katsumi, Takeshi;Kamon, Masashi;Araki, Susumu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.135-139
    • /
    • 2010
  • A construction technique to install the soil-bentonite (SB) cut-off wall for in-situ geoenvironmental containment by employing the trench cutting and re-mixing deep wall method is first presented in this paper. The laboratory test results on the hydraulic barrier performance of SB in relation to the chemical compatibility are then discussed. Hydraulic conductivity tests using flexible-wall permeameters as well as swell tests were conducted for SB specimens exposed to various types and concentrations of chemicals (calcium chloride, heavy fuel oil, ethanol, and/or seawater) in the permeant and/or in the pore water of original soil. For the SB specimens in which the pore water of original soil did not contain such chemicals and thus the sufficient bentonite hydration occurred, k values were not significantly increased even when permeated with the relatively aggressive chemical solutions such as 1.0 mol/L $CaCl_2$ or 50%-concentration ethanol solution. In contrast, the SB specimens containing $CaCl_2$ in the pore water had the higher k values. The excellent linear correlation between log k and swelling pressure implies that the swelling pressure can be a good indicator for the hydraulic barrier performance of the SB.

  • PDF

A Study on the Improvement of Marine Pollution and Marine Litter Managements in Korea (우리나라 해양오염 및 해양폐기물관리 개선에 관한 연구)

  • Park, Kwang-Ha;Kwon, Young-Du;Kim, Jong-Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.33-43
    • /
    • 2013
  • That occur in the ocean and the efficient management of marine litter on marine pollution oil spill response one step further strategies are needed. Marine pollution accidents occurred in 2011, a total of 287 and was found in runoff 369 kL, respectively compared to the previous year decreased by 13% and 39%. Average amount of marine materials during 5-years represent the oil flow of 310.5 kL (heavy fuel oil of 106.0 kL, diesel of 178.9 kL, oily bilge water of 22.3 kL, other oil of 7.7 kL) and the waste of 62.3 tons, the hazardous and noxious substances (HNS) was 510.6 kL. Marine emissions in 2011 by type of waste that a total amount of dumping 3,972 $m^3$, and livestock manure 795 $m^3$(20%), waste water 1,431 $m^3$(36%), sewage sludge 887 $m^3$(22%), wastewater sludge, 813 $m^3$(21%), manure 5 $m^3$(0.1%), other 41 $m^3$(0.9%), respectively. The concept of marine waste and needs to be more clearly defined. Integrated management of hazardous chemicals according to the incident management system should be established. To remove of coastal pollution, response officer needs korean coast response system. Like the marine pollution response, coastal pollution response systems also require step response.

Corrosion Characteristics of Welding Zone by Types of Repair Welding Filler Metals and Post Weld Heat Treatment

  • Lee, Sung-Yul;Moon, Kyung-Man;Lee, Yeon-Chang;Kim, Yun-Hae;Jeong, Jae-Hyun
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.209-213
    • /
    • 2012
  • Recently, the fuel using in the diesel engines of marine ships has been changed to a low quality of heavy oil because of the steady increase in the price of oil. Therefore, the wear and corrosion in all parts of the engine such as the cylinder liner, piston crown, and spindle and seat ring of exhaust valves has correspondingly increased. The repair welding of a piston crown is a unique method for prolonging its lifetime from an economic point of view. In this case, filler metals with a high corrosion and wear resistance are mainly being used for repair welding. However, often at a job site on a ship, a piston crown is actually welded with mild filler metals. Therefore, in this study, mild filler metals such as CSF350H, E8000B2, and 435 were welded to SS401 steel as the base metal, and the corrosion properties of the weld metals with and without post weld heat treatment were investigated using some electrochemical methods in a 0.1% $H_2SO_4$ solution. The weld metal welded with CSF350H filler metal exhibited the best corrosion resistance among these filler metals, irrespective of the heat treatment. However, the weld metal zones of the E8000B2 and 435 filler metals exhibited better and worse corrosion resistance with the heat treatment, respectively. As a result, it is suggested that in the case of repair welding with CSF350H and 435 filler metals, no heat treatment is advisable, while heat treatment is desirable if E8000B2filler metal is used with repair welding.

Effect of Changing the Intake Air Temperature in a Marine Diesel Engine on the Characteristics of Exhaust Gas Emission (선박 디젤기관의 배기배출물 특성이 흡기 온도변화에 미치는 영향)

  • Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.788-794
    • /
    • 2019
  • Recently, global climate change caused by greenhouse gases has emerged as a significant air-environmental problem. Technical innovation in response to this phenomenon is ongoing, with an emphasis on the environmental impacts of unusually high temperatures and unexpected heavy rainfall. In this study, we investigated the effects of temperature change on air pollution for a concomitant rapid temperature increase. The test conditions include loading from 0 % to 100 % at 1400 rpm, 1600 rpm, and 1800 rpm for a change in the intake air temperature of a marine diesel engine from 20 ℃ to 50 ℃. The experimental results revealed that CO and HC decreased slightly, whereas the brake specific fuel consumption, NOx, and PM increased slightly when the intake air temperature changed. In addition, it was determined that the combustion temperature did not change significantly.

Evaluation of structural integrity of the HP vaporizer and pipes of LNG fuel gas supply system (LNG 연료 선박용 FGSS의 고압 기화기와 출입구 배관에 대한 구조 건전성 평가)

  • Kim, Chang-Soo;Yoon, Joo-Hwan;Lee, Chang-Joon;Ha, Man-Young;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.780-785
    • /
    • 2016
  • Heavy oil used as ship propulsion has a serious issue regarding exhaust emission of global warming. Recently, among large-scale merchant ships are using LNG as green ships so called ech-ships. In this study, an vaporizer and pipes under cryogenic and high pressure load were considered to evaluate structural integrity according to codes. Structural analysis of the vaporizer and pipes was performed using the commercial code, ANSYS. Integrity evaluation of the vaporizer based on von Mises stress was performed in accordance with allowable stress specified in ASME Boiler & Pressure Vesssel Section VIII Division 2. To assess structural integrity of the pipes, stress components were combined and compared with ASME B31.3. The calculated stresses for all load cases are lower than allowable stresses, therefore the structural integrity of equipments are verified.