• Title/Summary/Keyword: Heavy duty

Search Result 444, Processing Time 0.034 seconds

Effect of Coolant Flow Passages Between Cylinder Blocks on the Cooling Performance of a Heavy-duty Diesel Engine (실린더 블록 사이의 냉각수 유입홀이 대형 디젤엔진의 냉각성능에 주는 영향)

  • Lee, Sang-Kyoo;Rhim, Dong-Ryul;Lee, Sang-Up;Kim, Min-Jung;Yoo, Seung-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.341-344
    • /
    • 2006
  • In this analytical study on the engine coolant flow of a heavy-duty diesel engine with 4 valves and linear-type 8 liter 6 cylinders, the characteristics of pressure drop and engine cooling performance with the additional coolant passages between cylinder blocks have been investigated. Since the most part of pressure drop is caused by the coolant flow passages inside a cylinder head and cylinder blocks for this type of heavy-duty diesel engines, the advantage of pressure drop is just 2.6% and the characteristics of heat transfer and the distribution of coolant velocities in the head part show little differences in case of additional coolant passages. Thus the coolant flow passages between cylinder blocks make little contribution on the cooling performance of heavy-duty diesel engines

  • PDF

An Investigation on the Proper Hydrogen Mixing Rate in Heavy-Duty Hydrogen-CNG Engine (수소-천연가스 혼합연료기관의 최적 수소 분사율 검토)

  • LlM, H.S.;KIM, Y.Y.;LEE, JONG T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 2004
  • A heavy duty hydrogen enriched CNG engine has the possibility to obtain stable operation at ultra lean condition and to reduce emission extremely. And it can also serve as a so called bridge technology between the current fossil fueled engine and the future hydrogen power system. The emission, torque and brake thermal efficiency characteristics of a heavy-duty hydrogen-CNG engine were investigated to determine the proper mixing rate of hydrogen and CNG. It was found that the proper mixing rates at ${\lambda}=1.4$ and ${\lambda}=1.6$ were around 20% and 30% for hydrogen addition rate respectively.

Fundamental Study on Liquid Phase LPG Injection System for Heavy-Duty Engine (I) (대형엔진용 액상분사식 LPG 연료공급 방식에 대한 기초연구 (1))

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.85-91
    • /
    • 2001
  • LPG has been well known as a clean alternative fuel for vehicles. As a fundamental study on liquid phase LPG injection (hereafter LPLI) system application to heavy-duty engine, engine output and combustion performance were investigated with various operating conditions using a single cylinder engine equipped with the LPLI system. Experimental results revealed that no problems were occurred in application of the LPG fuel to heavy-duty engine, and that volumetric efficiency and engine output, by 10% approximately, were increased with the LPLI system. It was resulted from the decrease of the intake manifold temperature through liquid phase LPG fuel injection. These results provided an advantage in the decrease of the exhaust gas temperature, in the control of knocking phenomena, spark timing and compression ratio. The LPLI engine could normally operated under $\lambda$=1.5 or EGR 30% condition. The optimized swirl ratio for the heavy duty LPG engine was found around R_s$ = 2.0.

  • PDF

A Teleoperated Bilateral Control System for Heavy Duty Tasks

  • S.H. Ahn;Kim, S.H.;D.H. Hong;J.S. Yoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.155.2-155
    • /
    • 2001
  • A heavy duty power manipulator consisting of high reduction ratio joints is usually used in heavy duty tasks. When the heavy duty power manipulator is used as the slave manipulator in the teleoperated bilateral control system, the position control performance of the slave manipulator and the system stability tend to deteriorate due to the windup phenomenon caused by actuator saturation. KAERI has developed a teleoperated bilateral control system for the study of the remote handling of a spent fuel mockup bundle, which has an enhanced bilateral control algorithm improving the position tracking performance of the slave manipulator while compensating for the windup phenomenon. In this paper, the developed bilateral control system ...

  • PDF

Development of Durable Reliability Assessment Methods for Heavy Duty Coatings

  • Kim, Seung-Jin;Jung, Ho;Yang, In-Mo;Tanaka, Takeyuki
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.155-163
    • /
    • 2005
  • Heavy duty coating are required to have minimum durable period of 15 years under average usage environment because these paints are coated with purpose of anti-corrosion, antifouling, plastering etc. Onto steel structures constructed upon land and sea and other ferrous structures of electric power generation plants, electricity transmission towers, large structures of various plants, etc. Therefore we tried to estimate heavy duty coating longevity through reliability evaluation method and used combined cyclic anti-conrrosion test method composed of drying, moisturizing and salt spray as for accelerated life test to estimate longevity. Accelerated life test hours to heavy duty coating of first grade (with longevity not less than 15 years) specification may be obtained from troubleless test hours $t_n=\frac{B_p}{n^{1/\beta}}\left[\frac{1n(1-CL)}{1n(1-p)} \right]^{1/\beta}=19.671$ (yr) where shape parameter $\beta=1.1$, confidence level CL=80 %, warranty life $B_{10}=15$ yr and sampling size n=10 (2 sets). Because acceleration factor {AF} found by accelerated test is 41.7, accelerated life test hours required may be represented about 4,132 hr so that if this amount of hours is converted to number of cycles(6 hr/cycle) of complex cycle corrosion resistance test then the amount is tantamount about 690 cycles. That means if there does not occur trouble failure (with defect factor sum not more than 20) during when there is performed 690 cycles of combined cyclic anti-corrosion test to heavy duty coating specimen then it signifies that there can be warranted longevity $B_{10}$ of 15 yr under condition of confidence level CL=80 %.