• Title/Summary/Keyword: Heavy atom methods

Search Result 9, Processing Time 0.021 seconds

The crystal and molecular structure of sulfisoxazole

  • Koo, Chung-Hoe;Shin, Hyun-So;Cho, Sung-Il
    • Archives of Pharmacal Research
    • /
    • v.5 no.2
    • /
    • pp.79-86
    • /
    • 1982
  • Sulfisoxazole, $C-{11}H_{13}N_{3}S$, crystallized in the orthohombic system, space group Pbca, with a = 14.492(1), b = 11.563(1), c = 14.900(2) $\AA$ and Z = 8. Intensities for 1867(1360 observed) unique reflections were measured on a four-circle diffractometer wirh CuKa radiation ($\lambda$ = 1.5418$\AA$). The structure was solved by heavy atom methods and refined by full-matrix least-squares procedures to a final R of 0.094. The benzene ring plane makes an angle of $68^{\circ}C$ with the plane of the isoxazole ring, which is plannar. The conformational angle formed by the torsional angle C(4)-S-N(2)-C(7) is $54^{\circ}C$. There are two intermolecular hydrogen bonds in the structure. One of them is of the type N-H...H with the length 2.915$\AA$. Thus two dimensional networks of hydrogen bonds form infinite moelcular sheets parallel to the (001) plane. Adjacent sheets are bound together by van der Waals forces.

  • PDF

Efficiency Factors of Singlet Oxygen Generation from Core-Modified Expanded Porphyric : Tetrathiarubyrin in Ethanol

  • Ha, Jeong Hyeon;Jeong, Guk Yeong;Kim, Min Seon;Lee, Yang Hun;Sin, Gu;Kim, Yong Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2001
  • The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended ${\pi}conjugation$, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended $\pi-conjugation$, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 $\pm$ 0.10 and the triplet state lifetime was shortened to 7.0 $\pm$ 1.2 ${\mu}s$. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 $\pm$ 0.02, which is somewhat lower than expected. On the other hand, the efficiency of singlet oxygen generation during the oxygen quenching of triplet state, $f{\Delta}^T$, is near unity. Such high efficiency of singlet oxygen generation can be explained by the following two possible factors: The hydrogen bonding of ethanol which impedes the deactivation pathway of the charge transfer complex with oxygen to the ground state, the less probability of the aggregation formation.

Direct Methods

  • 서일환
    • Korean Journal of Crystallography
    • /
    • v.12 no.1
    • /
    • pp.37-54
    • /
    • 2001
  • 1960년대까지는 단결정 구조를 해석할 때 주로 Patterson 방법으로 중원자(heavy atom)를 찾고 이 중원자에 의한 위상에 기초하여 구조를 해석해 왔다. 회절점의 위상을 수학적으로 결정하는 직접법(direct method)은 1948년 Harker와 Kasper에 의해서 최초의 논문이 발표된 이후, 50∼60년 대에 이론적 기초가 구축되었으며, 70년대부터 컴퓨터 프로그램화되어 실용되기 시작하였다. 본 해설문에서는 직접법에 사용되는 정규화된 구조 인자(normalized structure factor)와 unitary 구조 인자의 정의를 소개한 후, 직접법의 기본식인 Sayre 방정식으로부터 유도되는 반전적 혹은 대칭중심적(centric)인 경우에서 성립하는 부호 관계(sign relationship) 및 ∑₂-관계(∑₂-relation)와 비반전적(acentric)경우에서 성립하는 탄젠트 공식(tangent formula)의 유도 과정을 설명하였고, 부호 관계와 탄젠트 공식이 필요로 하는 처음 몇 개의 회절점의 위상을 정하는 과정도 보였다.

  • PDF

MO Studies of Configuration and Conformation (Ⅳ). Conformations of N-Acetyl Pyrrolidone and Its Protonated Form (배치와 형태에 관한 분자궤도함수론적 연구 (제4보). N-아세틸피롤리돈과 그 양성자 부가물의 형태에 관한 연구)

  • Ikchoon Lee;Suk Kee Lee;Shi Choon Kim;Young Gu Jeon
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 1978
  • MO theoretical studies on the conformations of N-acetylpyrrolidone and its protonated form were carried out by the EHT and CNDO/2 methods. According to our calculated results, the heavy atom skeleton of this molecule is planar, and the trans-trans planar conformation is more stable than cis-trans. The protonation occurs most readily on the ring carbonyl oxygen. These results were interpreted in terms of conjugative, electrostatic and steric effect.

  • PDF

The Crystal and Molecular Structure of Salicylaldehyde-4-piperidinothiosemicarbazone (Salicylaldehyde-4-piperidinothiosemicarbazone의 결정 및 분자구조)

  • Young-Ja Lee
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.3-14
    • /
    • 1976
  • The crystal structure of alicylaldehyde-4-piperidinothiosemicarbazone, $C_{13}H_{l7}N_3OS$, has been determined by single crystal X-ray analysis. The crystals are orthorhombic, space group $P2_12_12_1$, with unit cell dimensions a = 6.52(2), b = 13.42(4), c = 14.92(4)${\AA}$. There are four formular units in a unit cell. The structure was solved by the heavy atom method and refined by isotropic block diagonal least-squares methods to a final R value of 0.10 for 1019 observed reflections. The oxygen atom of the hydroxyl group is involved in two hydrogen bonds, one as donor in the intramolecular O-H${\cdots}$N hydrogen bond and the other as acceptor in the intermolecular N-H${\cdots}$O hydrogen bond, the distances of the hydrogen bonds 2.56 and 3.00${\AA}$ respectively.The molecules are joined into infinite columns by the N-H${\cdots}o$O hydrogen bonds which form spirals along the two fold screw axis parallel to the a axis. The molecular columns are held together by van der Waals forces.

  • PDF

Crystal Structure of Penicillin V Potassium Salt

  • Kim, Whan-Chul;Yi, Seung-Ho;Shin, Jung-Mi;Yoon, Tae-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.713-717
    • /
    • 1993
  • The crystal structure of the potassium salt of penicillin V has been studied by the X-ray crystallographic methods. Crystal data are as follows; potassium 3,3-dimethyl-7-oxo-6-phenoxyacetoamido-4-thia-1- azabicyclo[3.2.0]-heptane-2${\alpha}$-carboxylate, $K^+{\cdot}C_{16}H_{18}N_2O_5S^-$, $M_r$= 388.5, triclinic, Pl, a= 9.371 (1), b= 12.497 (2), c= 15.313 (2) ${\AA},\;{\alpha}= 93.74\;(2),\;{\beta}=99.32\;(1),\;{\gamma}=90.17\;(1)^{\circ},\;V=1765.7\;(2)\;{\AA}^3$, Z=4, $D_m=1.461\;gcm^{-1},\;{\lambda}(Cu\;K{\alpha})=1.5418\;{\AA},\;{\mu}=40.1\;cm^{-1}$, F(000)=808, T=296 K. The structure was solved by the heavy atom and difference Fourier methods with intensity data measured on an automated four-circle diffractometer. The structure was refined by the full-matrix least-squares method to a final R= 0.081 for 3563 observed $[I_0{\geq}2{\sigam}(I_0)]$ reflections. The four independent molecules assume different overall conformations with systematically different orientations of the phenyl groups although the penam moieties have the same closed conformations. There are intramolecular hydrogen bonds between the exocyclic amide nitrogen and phenoxy oxygen atoms. The penam moiety is conformationally very restricted although the carboxyl and exocyclic amide groups apparently have certain rotational degrees of freedom but the phenyl group is flexible about the ether bond despite the presence of the intramolecular N-H${\cdots}$O hydrogen bond. There are complicated pseudo symmetric relationships in the crystal lattice. The penam moieties are related by pseudo 20.5 screw axes and the phenyl groups by pseudo centers of symmetry. The potassium ions, related by both pseudo symmetries, form an infinite zigzag planar chain parallel to the b axis. Each potassium ion is coordinated to seven oxygen atoms in a severely distorted pentagonal bipyramid configuration, forming the infinite hydrophilic channels which in turn form the molecular stacks. Between these stacks, there are only lipophilic interactions involving the phenyl groups.

The Crystal and Molecular Structure of Sodium Sulfisoxazole hexahydrate (Sodium Sulfisoxazole Hexahydrate의 결정 및 분자구조와 수소결합에 관한 연구)

  • Young Ja Park;Chung Hoe Koo
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.19-34
    • /
    • 1976
  • The crystal structure of sodium sulfisoxazole hexahydrate, $C_{11}H_{12}N_3O_3SNa{\cdot}6H_2O$,has been determined by X-ray diffraction method. The compound crystallizes in the monoclinic space group $$P2_1}c$$ with a = 15.68(3), b = 7.70(2), c = 17.94(4)${\AA}$, ${\beta}$ = $118(2)^{\circ}$ and Z = 4. A total of 1717 observed reflections were collected by the Weissenberg method with $CuK{\alpha}$ radiation. Structure was solved by heavy atom method and refined by block-diagonal least-squares methods to the R value of 0.14. The conformational angle formed by the S-C(l) bond with that of N(2)-C(7), when the projection in taken along the S-N(2), is $73^{\circ}.$ The benzene ring is planar and makes an angle of $60^{\circ}$ with the plane of the isoxazole ring, which is also planar. The sodium atom has a distorted octahedral coordination of N(l) and five oxygen atoms from hydrate molecules. Sodium sulfisoxazole hexahydrate shows fourteen different hydrogen bondings in the crystal. These are six $O-H{\cdots}O-H bonds, three $O-H{\cdots}O$ bonds, two $O-N{\cdots}N,$ one $N-H{\cdots}O,O-H{\cdots}N,N-H{\cdots}O-H$ bond, with the distances in the range of 2.71 to $3.04{\AA}.$.

  • PDF

The Crystal Structure of Thiourea of Derivatives(I) (Thiourea Deirvatives의 결정과 분자구조 (제1보))

  • Park Young Ja;Suh Chung Sun;Koo, Chung Hoe
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.307-319
    • /
    • 1977
  • The crystal structure of $N-({\alpha}-dimethyl\;{\beta}-hydroxy)ethyl\;N'-cyclohexyl\;thiourea,\;C_{ll}H_{22}N_2OS)$, has been determined by X-ray diffraction method. The compound crystallizes in the orthorhombic space group Pbca with a = 10.33(3), b = 11.82(3), c = 22.57(4)${\AA}$ and Z = 8. A total of 1414 observed reflections collected by the Weissenberg photographs and was solved by heavy atom method and refined by block diagonal least-squares methods to the R value of 0.13. The cyclohexane ring has a normal chair conformation and the thiourea unit is planar. The primary alcoholic group O-H bonded to C(l) makes an intramolecular hydrogen bond with N(2), which leads to stablize the molecule. There are two independent hydrogen bonds in the structure. One of them is of the type N-H${\cdot}{\cdot}{\cdot}$O intramolecular hydrogen bond with the length 2.71${\AA}$, another is of the type O-H${\cdot}{\cdot}{\cdot}$S intermolecular hydrogen bond with the length 3.21${\AA}$ parallel to the b axis. Apart from the hydrogen bonding system the molecules are held together by van der Waals forces in the crystal.

  • PDF

Synthesis of Binuclear Bismacrocyclic Iron(II) Complex by the Aerobic Oxidation of Iron(II) Complex of 1,4,8,11-Tetraazacyclotetradecane

  • Myunghyun Paik Suh;Gee-Yeon Kong;Il-Soon Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.439-444
    • /
    • 1993
  • The aerobic oxidation of the Fe(II) complex of 1,4,8,11-tetraazacyclotetradecane, [Fe(cyclam)$(CH_3CN)_2](ClO_4)_2$, in MeCN in the presence of a few drops of $HClO_4$ leads to low spin Fe(III) species [Fe(cyclam)$(CH_3CN)_2](ClO_4)_3$. The Fe(III) cyclam complex is further oxidized in the air in the presence of a trace of water to produce the deep green binuclear bismacrocyclic Fe(II) complex $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$. The Fe(II) ions of the complex are six-coordinated and the bismacrocyclic ligand is extensively unsaturated. $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$ crystallizes in the monoclinic space group $P2_1/n$ with a= 13.099 (1) ${\AA}$, b= 10.930 (1) ${\AA}$, c= 17.859 (1) ${\AA}$, ${\beta}$= 95.315 $(7)^{\circ}$, and Z= 2. The structure was solved by heavy atom methods and refined anisotropically to R values of R= 0.0633 and $R_w$= 0.0702 for 1819 observed reflections with F > $4{\sigma}$ (F) measured with Mo K${\alpha}$ radiation on a CAD-4 diffractometer. The two macrocyclic units are coupled through the bridgehead carbons of ${\beta}$-diimitie moieties by a double bond. The double bonds in each macrocycle unit are localized. The average bond distances of $Fe(II)-N_{imine}$, $Fe(II)-N_{amine}$, and $Fe(II)-N_{MeCN}$ are 1.890 (5), 2.001 (5), and 1.925 (6) ${\AA}$, respectively. The complex is diamagnetic, containing two low spin Fe(II) ions in the molecule. The complex shows extremely intense charge transfer band in the near infrared at 868 nm with ${\varepsilon}$= 25,000 $M^{-1}cm^{-1}$. The complex shows a one-electron oxidation wave at +0.83 volts and two one-electron reduction waves at -0.43 and-0.72 volts vs. Ag/AgCl reference electrode. The complex reacts with carbon monoxide in $MeNO_2$ to form carbonyl adducts, whose $v_{CO}$ value (2010 $cm^{-1}$) indicates the ${\pi}$-accepting property of the present bismacrocyclic ligand.