• Title/Summary/Keyword: Heavy Metal Species

Search Result 288, Processing Time 0.027 seconds

Evaluation of Heavy Metal Absorption Capacity of Native Plant Species in an Abandoned Coal Mine in South Korea (폐석탄광산지역에 적용가능한 자생식물종의 중금속 흡수능력 평가)

  • Yang, Keum Chul
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.290-298
    • /
    • 2021
  • This study was conducted to evaluate the possibility of applying phytoremediation technology by investigating soil and native plants in waste coal landfills exposed to heavy metal contamination for a long period of time. The ability of native plants to accumulate heavy metals using greenhouse cultivation experiments was alse evaluated. Plants were investigated at an abandoned coal mine in Hwajeolyeong, Jeongseon, Gangwon-do. Two species of native plants (Carex breviculmis. R. B. and Salix koriyanagi Kimura ex Goerz.) located in the study area and three Korean native plants (Artemisia japonica Thunb. Hemerocallis hakuunensis Nakai., and Saussurea pulchella (Fisch.) Fisch.) were cultivated in a greenhouse for 12 weeks in artificially contaminated soil. Soils contaminated with arsenic and lead were generated with arsenic concentration gradients of 25, 62.5, 125, and 250 mg kg-1 and lead concentration gradients of 200, 500, 1000, and 2000 mg kg-1, respectively. Results showed that none of the five plants could survive at high arsenic concentration treatment (125 and 250 mg kg-1) and some plants died in 2000 mg kg-1 lead concentration treatment soil. The plant translocation factor (TF) was highest in H. hakuunensis in arsenic treatments, and A. japonica in lead treatments, respectively. The bioaccumulation factor (BF) of plants was more than 1 in all species in arsenic treatment, whereas it was highest in H. hakuunensis. BF for all species was less than 1 in lead treatment. Particularly, in 2000 mg kg-1 concentration lead treatment, A. japonica accumulated more than 1000 mg kg-1 lead and was expected to be a lead hyperaccumulator. In conclusion, A. japonica and H. hakuunensis were excellent in the accumulation of arsenic heavy metals, and S. koriyanagi was excellent in lead accumulation ability. Therefore, the above mentioned three plants are considered to be strong contenders for application of the phytoremediation technology.

The survival rate, respiration and heavy metal accumulation of abalone (Haliotis discus hannai) rearing in the different copper alloy composition (동합금 조성에 따른 북방전복 (Haliotis discus hannai)의 생존, 호흡 및 중금속 축적률)

  • Shin, Yun-Kyung;Jun, Je-Cheon;Myeong, Jeong-In;Yang, Sung-Jin
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.353-361
    • /
    • 2014
  • In order to investigate the effects of copper alloy on abalone physiology, we studied survival rate, respiration, excretion rate, and heavy metal accumulation in each organ of adults and spats. The survival rate of spats and adults showed 27-60% and 63-83% respectively, higher survival rate in adults. In particular, 100% of copper panel led to lowest survival rate and there was no sharp distinction according to copper alloy composition. The respiration rate and excretion rate of ammonia nitrogen was $1.81mgO_2/g$ D.W./h and 0.43 mg $NH_4-N/g$ D.W./h respectively at 100% of copper panel. In other words, there was a high significant difference at the level, but no significant difference at other test levels (P < 0.05). The atomic ratio (0: N) hit the lowest at the 100% of copper panel showing 3.79 and no significant differences were seen among other test groups with 6.57-7.18 of a very low range. This means that the species might have undergone nutritional stress. In case of copper accumulation, the 100% copper panel group showed the highest level in hepatopancreas and muscle showing 6.91 mg/kg and 1.60 mg/kg respectively but the rest of groups showed similar levels. Zinc accumulation raised at Cu-Zn alloy panel had high significance showing 18.50 mg/kg and 1.10 mg/kg in hepatopancreas and muscle respectively (P < 0.05). To sum up, a cage net made of 100% pure copper is expected to have a negative effect on abalone in light of survival rate, heavy metal accumulation, and atomic ratio (0: N). Moreover, given that the substratum used for the high adhesive species and nutritious stress that is represented through the atomic ratio need to be considered, the copper alloy net is thought not to be suitable for abalone aquaculture.

Heavy Metal Contents of Canned Seafoods Packed in Oil (수산물 기름 담금 통조림 식품의 중금속 함량)

  • Heu, Min-Soo;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.307-314
    • /
    • 2004
  • Specification and heavy metal contents of canned seafoods packed in oil were investigated. 30 species of canned tuna were classified by 4 groups as follow; group (sample codes, 1-10) composed of tuna and oil only, group (11-18) composed of tuna, vegetable and oil, group (19-27) composed of tuna, sauce and oil, and group (28-30) composed of tuna, vegetable, sauce and oil. Commercial canned shellfish packed in oil were mainly produced from sea mussel (sample codes, 31 and 32) and oyster (33-35). Can bodies of canned tuna were made by tin-plate, and used c-enamel or aluminium-paste as coating materials. In pH values of canned tuna, sample codes 1-10 (pH 5.55-5.69) and 19-27 (pH 5.17-5.85) were higher than sample codes 11-18 (pH 4.95-5.43) and 28-30 (pH 5.20-5.38). There was no difference in salinity (1.3-1.9%) and vacuum degree (15-18 mmHg) among canned samples. Heavy metal contents of canned seafoods ranged from 1.04-9.03 ppm for Sn, and 0.17-0.68 ppm for Pb. Those values are below the permitted range (less than 150 ppm for Sn and 2 ppm for Pb).

Evaluation of accumulated particulate matter on roadside tree leaves and its metal content (가로수 수종별 잎의 미세먼지 축적량 및 금속 원소 함량 평가)

  • Kwon, Seon-Ju;Cha, Seung-Ju;Lee, Joo-Kyung;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.161-168
    • /
    • 2020
  • It is known that different plant species have ability to deposit different amounts of particulate matter (PM) on their leaves and plants can absorb heavy metals in PM through their leaves. Heavy metals in PM can have toxic effect on human body and plants. Therefore, PM on different roadside trees at Chungbuk national University including box tree (Buxus koreana), yew (Taxus cuspidate), royal azalea (Rhododendron yedoense), and retusa fringetree (Chionanthus retusa) was quantified based on particle size (PM>10 and PM2.5-10). The metal concentration in PM accumulated on leaves was analyzed using inductively coupled plasma-mass spectroscopy. In this study, the mass of PM>10 deposited on the surface of the tree leaves ranged from 6.11 to 32.7 ㎍/㎠, while the mass of PM2.5-10 ranged from 0 to 14.8 ㎍/㎠. The royal azaleas with grooves and hair on the leaf surface retained PM particles for longer time, while the yews and box trees with wax on leaf surfaces accumulated more PM. The PM contained elements in crustal material such as Al, Ca, Mg, and Fe and heavy metals including Cu, Pb and Zn. The concentration of elements in crustal material was higher in the coarser size, while heavy metal concentration was relatively higher in the finer size fraction. The Mn, Cd, Cu, Ni, Pb, and Zn concentrations of leaves and PM2.5-10 were significantly correlated indicating that PM was taken up through tree leaves.

Evaluation of Heavy Metal Contents in the Floras Derived from Granite and Coal Bearing Shale Areas in Keumsan (금산의 화강암 및 함탄질 셰일 지역 토양내 식물체의 중금속 함량 특성)

  • Song Suck-hwan;Kang Young-Rib;Kim Il-Chool
    • Korean Journal of Plant Resources
    • /
    • v.18 no.2
    • /
    • pp.251-259
    • /
    • 2005
  • Three different floras(M. sinsinsis, A. vulgaris, Robinia pseudo-acacia) were collected from the granite(GR) and coal bearing shale area(CB) and analysed for their heavy metal elements with the representative soils. Regardless of the flora species, the CB were high in average contents. Among the correlation relationships, the CB were more distinctive than the GR, and the A. vulgaris showed higher correlations than the M. sinsinsis. In the same soils, the A. vutgaris showed high contents than the M. sinsinsis and Robinia pseudo-acacia, and the M. sinsinsis were high relative to the Robinia pseudo-acacia. In the comparisons of the flora, root parts were high in most of the elements except for Zn. In the soils, the CB were high in most of elements while As and Mo showed different contents between the GR and CB. In the comparison between soil and flora, soils of the GR were high in the V and Sc contents and low in Zn and Cu, while those of the CR were high in the Cr, V and Sc contents, and low in the Zn contents, Comparing with the soil contents, the M, sinsinsis in the GR were similar to Co and V contents while, in the CB, the M. sinsinsis were similar to the Ni, Cr, Co, Zn, Mo contents, and the Robinia pseudo-acacia were similar to the Ni, Zn, Cu contents. Overall results suggested that the M. sinsinsis and A. vulgaris should be eligible for the bioremediation of the soils polluted by heavy metal such as the CB.

Characterization of Natural Zeolite and Study of Adsorption Properties of Heavy Metal Ions for Development of Zeolite Mine (제올라이트 광산개발을 위한 천연 제올라이트의 특성 분석 및 중금속 이온 흡착 특성 연구)

  • Kim, Hu Sik;Kim, Young Hun;Baek, Ki Tae;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.299-308
    • /
    • 2015
  • The six natural zeolites collected in Pohang area, Kyungsangbuk-do, Korea, were characterized by XRD, XRF, DTA, TGA, and CEC analysis. The primary species of these zeolite are modenite, albite, and quarts in Kuryongpo-A (Ku-A), Kuryongpo-B (Ku-B), Kuryongpo-C (Ku-C), Donghae-A (Dh-A), Donghae-B (Dh-B), and Donghae-C (Dh-C) samples. The XRF analysis showed that the six zeolites contain Si, Al, Na, K, Mg, Ca, and Fe. Cation exchange capacity of Kuryongpo-C (Ku-C) zeolite was the highest compared to other zeolites. The capabilities of removing heavy metal ions such as $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ were compared. The effect of reaction time in removing heavy metal ions was studied. The experimental results showed that the efficiency of removal was low for $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ ions. These may be caused by the low content of zeolite in the six natural zeolites. This indicates that the adsorption capacity roughly tends to depend on the zeoite contents, ie., the grade of zeolite ore.

Calculations of Surface Stresses in Metals Under Mechanical Strains (기계적 변형하에서 금속재료의 표면응력 계산)

  • Kim, Sung-Youb;Earmme, Youn-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.250-257
    • /
    • 2008
  • We calculate the variation of the surface stresses according to uniaxial and biaxial strains in face-centered cubic (FCC) metals. In our study, three mainly observed free surfaces of seven representative FCC metals are considered. Employed method is molecular mechanics, in which the interaction of atoms is described by empirical interatomic potentials. As uniaxial strain increases to tensile direction, the surface stresses on {100} and {110} free surfaces decrease monotonously, while those on {111} surface increase. These tendencies are the same regardless of the species of metals and interatomic potentials employed. However, when the system is under biaxial strain, surface stresses change different according to the surface directions, the species of metals, and even interatomic potentials. On {100} and {111} surfaces, heavy metals (Pt, Au) show the opposite variation to light metals (Ni, Cu). In the cases of Pd and Ag, the surface stresses reveal the opposite tendency, depending on interatomic potentials used.

Biosorption of Pb and Cu by Marine Algae (해조류를 이용한 Pb 및 Cu의 흡착)

  • 서근학;안갑환;조문철;김병진;진형주;홍용기
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.444-448
    • /
    • 1998
  • Biosorption of Pb and Cu was evaluated for 23 species of marine algae collected from a Korean coast. Among a variety of species for biosorbent potential, Hypnea charoides showed the highest capacity for Pb. An adsorption equilibrium was reached in about 2 hr for Pb and 30 min for Cu. The uptake capacity was 192.8 mg Pb/g biomass and 256 mg Cu/g biomass, respectively. The adsorption parameters for Pb and Cu were determined according to Langmuir model. With an increase in pH value, more negative sites are becoming avaliable for adsorption of pH and Cu, thus the removal of Pb and Cu increases at alkaline conditions. The selectivity of mixture solution shows the uptake order of Pb>Cu>Cr>Cd. When Ca concentration increases in Pb solution, Pb was selectively adsorbed.

  • PDF

Isolation and mRNA Expression of Metallothionein Isoforms from Rockbream Oplegnathus fasciatus (돌돔(Oplegnathus fasciatus)으로부터 Metallothionein 유전자 Isoform들의 분리 및 발현 특징 분석)

  • Lee, Sang-Yoon;Nam, Yoon-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.2
    • /
    • pp.126-140
    • /
    • 2011
  • Genetic determinants of two metallothionein isoforms (MT-A and MT-B) were isolated and characterized from the perciform species, rockbream (Oplegnathus fasciatus). Rockbream MT-A and MT-B shared a high degree of homology at amino acid levels with representative orthologs from other perciform species, especially with respect to the conserved cysteine residues. At the genomic level, both MT-A and MT-B genes represent a tripartite structure typical of vertebrate MT genes. However, rockbream MT-B showed unusually large introns (1.2 kb and 0.8 kb for intron I and II, respectively), a phenomenon that has rarely been seen in other vertebrate MT genes. MT-A and MT-B transcripts were ubiquitously detected in a wide array of tissues, wherein brain and eye showed the highest basal expression levels, and the fin exhibited the lowest expression of both isoforms. The basal expression of MT-A in most tissues was significantly higher (ranging from 4- to 10-fold) than that of MT-B. Upon heavy metal exposures to Cd, Cu or Zn at 25 ppb for 48 h, MT-A and MT-B transcripts in the liver were significantly activated by Cd and moderately by Zn. On the other hand, exposure to Cu did not result in alterations of MT-A, nor in the significant suppression of MT-B. Following bacterial challenges with Escherichia coli, Edwardsiella tarda or Streptococcus iniae, MT isoforms in the liver, kidney and spleen were highly modulated and exhibited a pattern that was dependent on the bacterial species, tissues and isoforms. These results suggest that the two MT isoforms could be taken into account as potential indicators of metal toxicity and immune perturbations of this aquaculture-relevant species.

Effects of Drying and Heating on the Chemical Species of Heavy Metals in Lake Chungcho Sediments (건조 ${\cdot}$ 가열처리가 청초호 퇴적물 중 중금속의 화학적 존재형태에 미치는 영향)

  • Park, Gil-Ok;Kim, Hee-Joung;An, Hae-Jung;Kim, Shin-Hee;Jun, Sang-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.334-340
    • /
    • 2005
  • The chemical forms of Cd, Cu, Pb, and Zn were analysed by sequential extraction technique to evaluate the effects of drying and heating of dredged sediments from Lake Chungcho. The most abundant fraction of Cd, Cu, and Zn in the wet and untreated sediment was organic/sulfidic fraction that is state in reducing environment such as the bottom condition of Lake Chungcho, while Pb dominated in residual fraction. This means that the source of Cd, Cu, and Zn in the Chungcho lake sediment is related to the organic degradation and Pb to the erosion from surrounding rocks. With drying and oxidation by dredging, heating treatment, and disposal of the lake sediment, the chemical forms of studied metals changed greatly from organic/sulfidic fraction to adsorbed and reducible fractions which are more labile in oxygenated environment. Organic/sulfidic fraction of Cd, Cu and Pb in the wet sediment was transformed with drying and heating treatments to the labile ones like adsorbed and reducible fraction, but Zn to carbonate and reducible fraction. Heating of the sediment at $320^{\circ}C$ greatly increased the labile fraction of Cd and Cu, while that at $105^{\circ}C$ for Pb and Zn. It is believed that the increase in labile forms of heavy metals in the sediments by drying and heating is caused by the contact with oxygen during drying and heating and by the increase of pH of the pore water at the expense of organic/sulfidic fraction. It is concluded that the drying and oxidation currently used in the treatment of dredged sediment can increase labile forms of heavy metals in the sediment, and the potential of the metal availability from the sediment.