• 제목/요약/키워드: Heavy Equipment

검색결과 497건 처리시간 0.026초

우수이용 효율화를 위한 수질변화와 강우특성 검토 (The Investigation of Rainwater Quality Variation and Rainfall Characteristic for the Effective Usage)

  • 이창수
    • 대한토목학회논문집
    • /
    • 제28권3B호
    • /
    • pp.355-361
    • /
    • 2008
  • 우수의 생활용수로의 이용가능성을 검토하기 위하여 가로 2 m 세로 1 m 크기의 실험장치를 이용하여 우수수질 분석을 실시하였다. 그 결과, 우수수질의 pH는 $6.3{\pm}0.3$로 비교적 양호한 상태를 나타내었으나, 초기강우 5 mm 일 때의 탁도가 5 NTU로 음용수 기준을 훨씬 상회하는 것으로 분석되어 우수를 생활용수로 이용하기 위해서는 적절한 처리가 필요한 것으로 판단된다. 우수 중 중금속 성분은 음용수 기준이하로 거의 검출되지 않았다. 또한 우수수질과 강우특성과의 관계는 강우시간이 지속될수록 개선되며, 우수수질은 강우발생전의 대기상태와 밀접한 관계가 있음을 알 수 있었다.

Industry 4.0 & Construction H&S: Comparative Perceptions

  • Beale, James;Smallwood, John
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.249-256
    • /
    • 2020
  • Historical construction health and safety (H&S) challenges, in terms of a range of resources and issues, continue to be experienced, namely design process-related hazards are encountered on site, workers are unaware of the hazards and risks related to the construction process and its activities, activities are commenced on site without adequate hazard identification and risk assessments (HIRAs), difficulty is experienced in terms of real time monitoring of construction-related activities, workers handle heavy materials, plant, and equipment, and ultimately the experience of injuries. Given the abovementioned, and the advent of Industry 4.0, a quantitative study, which entailed the completion of a self-administered questionnaire online, was conducted among registered professional (Pr) and candidate Construction H&S Agents, to determine the potential of Industry 4.0 to contribute to resolving the challenges cited. The findings indicate that Industry 4.0 technologies such as augmented reality (AR), drone technology, virtual reality (VR), VR based H&S training, and wearable technology /sensors have the potential to resolve the cited H&S challenges as experienced in construction. Conclusions include that Industry 4.0 technologies can finally address the persistent H&S challenges experienced in construction. Recommendations include: employer associations, professional associations, and statutory councils should raise the level of awareness relative to the potential implementation of Industry 4.0 relative to H&S in construction; case studies should be documented and shared; tertiary construction management education programmes should integrate Industry 4.0 into all possible modules, especially H&S-related modules, and continuing professional development (CPD) H&S should address Industry 4.0.

  • PDF

SYSTEM MODELLING OF ON-SITE ENERGY CONSUMPTION PROFILE IN CONSTRUCTION SITES AND A CASE STUDY OF EARTH MOVING

  • Kyoo-Jin Yi
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.287-293
    • /
    • 2013
  • The annual expenditure on diesel oil and heavy oil in the construction sector is the second largest among all industrial sectors. According to the greenhouse reduction scheme of Korean Government, construction sector targeted 7.1% reduction by 2020. Although this target is not higher than other industrial sectors, it is not easy to achieve the reduction target without radical advance in technology, which cannot be expected to happen soon, considering the conservative characteristics of construction industry. Most researches on environmental issues focus on the issues related to energy saving matters during material production stage or maintenance stage, such as heating and insulation, and few deal with the issues directly related to the energy use in the construction sites. This research regards the operation of equipment for the on-site construction processes as a system and attempts to model the energy use processes related to the activities in construction sites, and provides simulation results of earth excavation and hauling processes. The result of this research is expected to aid construction planners estimating the time-based patterns of energy use and assessing greenhouse gas emission and to help selecting more energy efficient alternatives at the planning stage.

  • PDF

Work-Related Musculoskeletal Disorders Among Farmers in the Southeast Asia Region: A Systematic Review

  • Kurnia A. Akbar;Phally Try;Pramon Viwattanakulvanid;Kraiwuth Kallawicha
    • Safety and Health at Work
    • /
    • 제14권3호
    • /
    • pp.243-249
    • /
    • 2023
  • Background: Southeast Asia has many people who work in the agriculture sector. Not many stakeholders pay special attention to the health of farmers, even though they are exposed to various types of hazards. One of the most common health complaints among farmers is related to work-related musculoskeletal disorders (WMSDs). This study aims to assess the prevalence of WMSDs and factors associated with them among farmers in Southeast Asia. Methods: A literature search on PubMed, ScienceDirect, Scopus, and EBSCO was conducted. Articles were included if they studied ergonomic problems among farmers from 11 countries in the Southeast Asia region and were published during 2015-2022. The Critical Appraisal Skills Program was used to evaluate the quality of the articles. The search process and retrieval process reflected PRISMA's recommendation. Result: There were 14 studies found from 3 countries that had published articles in PubMed and ScienceDirect, including Thailand [8], Indonesia [4], and Malaysia [2]. The prevalence of WMSDs in Thailand, Indonesia, and Malaysia was 78,31%, 81,27%, and 88,39%, respectively. Common factors associated with WMSDs include age, sex, smoking habits, drinking alcohol habits, working period (years), type of work, awkward position, non-ergonomic equipment, repetitive movements, and lifting heavy loads. Conclusion: The prevalence of WMSDs among farmers in Southeast Asia is considerably high. Effective intervention is essential for reducing the prevalence and protecting workers' health and well-being.

지게차 변속제어 알고리즘 검증을 위한 임베디드 변속기 시뮬레이터 개발 (Development of Embedded Transmission Simulator for the Verification of Forklift Shift Control Algorithm)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.17-26
    • /
    • 2023
  • A forklift is an industrial vehicle that lifts or transports heavy objects using a hydraulically operated fork, and is equipped with an automatic transmission for the convenience of repetitive transportation, loading, and unloading work. The Transmission Control Unit (TCU) is a key component in charge of the shift control function of an automatic transmission. It consists of an electric circuit with an input/output signal interface function and firmware running on a microcontroller. To develop TCU firmware, the development process of shifting algorithm design, firmware programming, verification test, and performance improvement must be repeated. A simulator is a device that simulates a mechanical system having dynamic characteristics in real time and simulates various sensor signals installed in the system. The embedded transmission simulator is a simulator that is embedded in the TCU firmware. information related to the mechanical system that is necessary for TCU normal operation. In this study, an embedded transmission simulator applied to the originally developed forklift TCU firmware was designed and used to verify various forklift shift control algorithms.

스마트 팩토리 모빌리티 에너지 효율을 위한 경로 최적화에 관한 연구 (Route Optimization for Energy-Efficient Path Planning in Smart Factory Autonomous Mobile Robot)

  • 엄동희;조동욱;김성주;박상현;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권1호
    • /
    • pp.46-52
    • /
    • 2024
  • The advancement of autonomous driving technology has heightened the importance of Autonomous Mobile Robotics (AMR) within smart factories. Notably, in tasks involving the transportation of heavy objects, the consideration of weight in route optimization and path planning has become crucial. There is ongoing research on local path planning, such as Dijkstra, A*, and RRT*, focusing on minimizing travel time and distance within smart factory warehouses. Additionally, there are ongoing simultaneous studies on route optimization, including TSP algorithms for various path explorations and on minimizing energy consumption in mobile robotics operations. However, previous studies have often overlooked the weight of the objects being transported, emphasizing only minimal travel time or distance. Therefore, this research proposes route planning that accounts for the maximum payload capacity of mobile robotics and offers load-optimized path planning for multi-destination transportation. Considering the load, a genetic algorithm with the objectives of minimizing both travel time and distance, as well as energy consumption is employed. This approach is expected to enhance the efficiency of mobility within smart factories.

스마트 건설안전관리시스템의 중요도-성과도 분석 연구 (Research on Importance-Performance Analysis of Smart Construction Safety Management System)

  • 박종일;윤창희
    • 대한안전경영과학회지
    • /
    • 제26권2호
    • /
    • pp.43-53
    • /
    • 2024
  • This study analyzes the importance-performance analysis (IPA) of the 10 dimensions of the smart construction safety management system, and analyzes which dimensions are important and which dimensions are performing to determine key improvement tasks, incremental improvement tasks, Maintenance and reinforcement tasks and continuous maintenance tasks were derived. Among the 10 dimensions of the smart construction safety management system, the dimensions that are recognized as important by all field managers and field workers and have high performance are the automatic risk displacement measurement system, smart environmental sensor system, and heavy equipment seizure prevention system. However, areas that were perceived as having high importance but low performance were worker location tracking systems, smart safety helmet chin muscles, and smart safety ring fastening. Among the smart construction safety management systems perceived by field managers, areas for key improvement with high importance and low performance included worker location tracking system and smart safety ring fastening. Among the smart construction safety management systems perceived by field workers, the area for key improvement with high importance and low performance was the automatic risk displacement measurement system.

실시간 능동형 타입 격납장치 개발 (Development of Real-Time Active Type Seals)

  • 신중기;백희균;이용주
    • 방사선산업학회지
    • /
    • 제18권1호
    • /
    • pp.9-14
    • /
    • 2024
  • In order to thoroughly verify the denuclearization of the Korean Peninsula, it is urgent to develop technology capabilities to monitor, detect, collect, analyze, interpret, and evaluate nuclear activities using nuclear materials and secure nuclear transparency. The IAEA is actively using seal technology to maximize the efficiency of safety measures, and currently uses metal cap, paper, COBRA, and EOSS as seal devices. Unlike facilities that comply with safety measures requirements, such as domestic nuclear facilities, facilities subject to denuclearization are likely to have various risk environments that make it difficult to apply safety measures, and there is a high possibility that continuity of knowledge (COK) such as damage, malfunction, and power loss will not be maintained. This study aims to develop a real-time active seal device that can be applied in such special situations to enable immediate response in the event of a similar situation. To this end, the main functions of the real-time seal device were derived and applied, and a commercialized seal device and operation software. The real-time seal technology developed through this study can be applied to all nuclear facilities in South Korea, especially used as storage equipment for dry cask storage facilities of heavy water reactor's after fuel, and it is believed that unnecessary radiation exposure by inspectors can be minimized.

TBM 커터헤드의 구조안정성 검토를 위한 피로해석 (Fatigue analysis for structural stability review of TBM cutterhead)

  • 최순욱;강태호;이철호;장수호
    • 한국터널지하공간학회 논문집
    • /
    • 제22권5호
    • /
    • pp.529-541
    • /
    • 2020
  • 기계화터널시공의 대표적인 장비인 TBM의 커터헤드는 타 장비에 비해 굴착 중 발생하는 하중이 매우 크며, 마모가 발생하여 단면이 손실되는 작업환경을 가지고 있어 피로파괴에 의한 설계검토가 필요하지만, TBM커터헤드에 대한 피로해석을 수행한 사례는 찾기 어렵다. 본 연구에서는 직경 8.2 m인 커터헤드를 대상으로 안전수명설계 개념으로 S-N커브를 이용하여 응력-수명 설계 검토를 수행하였다. 또한 건설장비의 피로설계방법과 피로손상도를 평가하는 방법에 대해 소개하고 직경 8.2 m의 TBM 커터헤드를 대상으로 피로해석을 수행한 결과를 설명하였다. S-N curve는 피로 설계를 하는 데에 있어서 핵심적인 역할을 하는 것을 알 수 있었으며, 피로 하중을 받고 있는 구조물이 현재 시점에서 어느 정도의 피로 손상을 받고 있는지를 평가하는 데에도 사용될 수 있다. 앞으로 건설장비에서도 장비를 사용하는 동안 어떤 시점에서 피로문제가 발생하는지와 장비의 안전 점검은 언제 실시하는 것이 효과적인지 등에 대한 정보를 파악하는 안전수명설계 개념을 도입하는 것이 필요하다.

컨테이너터미널에서 안전교육이 사고에 미치는 영향 분석 (The Accidents Analysis for Safety Training in The Container Terminal)

  • 차상현;노창균
    • 한국항해항만학회지
    • /
    • 제40권4호
    • /
    • pp.197-205
    • /
    • 2016
  • 우리나라는 수출 입 물동량의 대부분을 해상수송에 의존하고 있는 입장에서 예기치 못한 안전사고 등으로 컨테이너터미널의 정상적인 기능을 수행하기 어렵고 신뢰성에 문제가 되어 신규 물량 유치 및 기존 물량 유지에 타격을 받게 될 가능성도 제기 된다. 이에 컨테이너터미널에서는 365일 고객에게 최상의 서비스 질을 제공하기 위해서 항만근로자의 적극적인 업무 대처와 역할을 강조하고 있는 실정이다. 이러한 결과 항만근로자들에게 과중한 업무의 부담이 전가되어 안전사고가 매년 발생하고 있다. 본 논문에서는 실제 광양항 A 컨테이너터미널의 2012년부터 2015년 재해현황을 분석하고, 안전사고 교육 미비 상태와 안전사고 교육을 꾸준히 실행 했을 때 컨테이너터미널의 안전사고 현황을 분석하였다. 장비별 안전사고 분석결과 GC 경우 교육 전 2012년 45건, 2013년 31건이 발생했으며, 교육준비 과정 2014년 23건, 집중 교육 기간 2015년에는 8건이 발생하였다. TC 경우 교육 전 2012년 13건, 2013년 19건이 발생했으며, 교육준비 과정 2014년 12건, 집중 교육 기간 2015년에는 8건이 발생하였다. YT 경우 교육 전 2012년 9건, 2013년 9건이 발생했으며, 교육준비 과정 2014년 9건, 집중 교육 기간 2015년에는 4건이 발생하였다. 컨테이너터미널의 안전교육은 법정 교육, 자체 교육과 장비별 안전 수칙 교육이 컨테이너터미널에서 안전사고에 미치는 영향이 크게 나타남에 따라 안전사고를 미연에 예방하기 위해서 안전교육을 강화하고 있다.