• 제목/요약/키워드: Heatmap Based Detection

검색결과 4건 처리시간 0.02초

객체 추적 성능향상을 위한 Heatmap Detection 및 Transformer 기반의 MOT 모델 설계 (Design of a MOT model based on Heatmap Detection and Transformer to improve object tracking performance)

  • 양현성;심춘보;정세훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.461-463
    • /
    • 2023
  • 본 연구는 실시간 MOT(Multiple-Object-Tracking)의 성능을 향상시키기 위해 다양한 기법을 적용한 MOT 모델을 설계한다. 연구에서 사용하는 Backbone 모델은 TBD(Tracking-by-Detection) 기반의 Tracking 모델을 사용한다. Heatmap Detection을 통해 객체를 검출하고 Transformer 기반의 Feature를 연결하여 Tracking 한다. 제안하는 방법은 Anchor 기반의 Detection의 장시간 문제와 추적 객체 정보 전달손실을 감소하여 실시간 객체 추적에 도움이 될 것으로 사료된다.

자율주행 차량을 위한 멀티 레이블 차선 검출 딥러닝 알고리즘 (Multi-label Lane Detection Algorithm for Autonomous Vehicle Using Deep Learning)

  • 박채송;이경수
    • 자동차안전학회지
    • /
    • 제16권1호
    • /
    • pp.29-34
    • /
    • 2024
  • This paper presents a multi-label lane detection method for autonomous vehicles based on deep learning. The proposed algorithm can detect two types of lanes: center lane and normal lane. The algorithm uses a convolution neural network with an encoder-decoder architecture to extract features from input images and produce a multi-label heatmap for predicting lane's label. This architecture has the potential to detect more diverse types of lanes in that it can add the number of labels by extending the heatmap's dimension. The proposed algorithm was tested on an OpenLane dataset and achieved 85 Frames Per Second (FPS) in end to-end inference time. The results demonstrate the usability and computational efficiency of the proposed algorithm for the lane detection in autonomous vehicles.

Transposed Convolutional Layer 기반 Stacked Hourglass Network를 이용한 얼굴 특징점 검출에 관한 연구 (Facial Landmark Detection by Stacked Hourglass Network with Transposed Convolutional Layer)

  • 구정수;강호철
    • 한국멀티미디어학회논문지
    • /
    • 제24권8호
    • /
    • pp.1020-1025
    • /
    • 2021
  • Facial alignment is very important task for human life. And facial landmark detection is one of the instrumental methods in face alignment. We introduce the stacked hourglass networks with transposed convolutional layers for facial landmark detection. our method substitutes nearest neighbor upsampling for transposed convolutional layer. Our method returns better accuracy in facial landmark detection compared to stacked hourglass networks with nearest neighbor upsampling.

긴꼬리 분포의 광간섭 단층촬영 데이터세트에 대한 다중 레이블 이미지 분류 (Multi-Label Image Classification on Long-tailed Optical Coherence Tomography Dataset)

  • ;정경희;;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.541-543
    • /
    • 2022
  • In recent years, retinal disorders have become a serious health concern. Retinal disorders develop slowly and without obvious signs. To avoid vision deterioration, early detection and treatment are critical. Optical coherence tomography (OCT) is a non-invasive and non-contact medical imaging technique used to acquire informative and high-resolution image of retinal area and underlying layers. Disease signs are difficult to detect because OCT images have many areas which are not related to any disease. In this paper, we present a deep learning-based method to perform multi-label classification on a long-tailed OCT dataset. Our method first extracts the region of interest and then performs the classification task. We achieve 98% accuracy, 92% sensitivity, and 99% specificity on our private OCT dataset. Using the heatmap generated from trained convolutional neural network, our method is more robust and explainable than previous approaches because it focuses on areas that contain disease signs.