• Title/Summary/Keyword: Heating-cooling

Search Result 2,024, Processing Time 0.035 seconds

Evaluation of Quality Characteristics of Broth Packets with Different Treatment of Dolsan Mustard Seeds (돌산갓 종자를 첨가한 국물용 육수팩의 품질특성)

  • Oh, SunKyung;Choi, MyeongRak
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.667-677
    • /
    • 2022
  • Dolsan mustard seeds (DMS) were added in whole, crushed, and roasted form at 0.5 g (S-1), 1.0 g (S-2), and 1.5 g (S-3), respectively to broth and heated for 10 or 15 min. After cooling, the quality characteristics were measured. Salinity and pH decreased with boiling time. The antioxidant activities of the experimental broth were measured in terms of total polyphenol content, total flavonoid content, electron donating ability (EDA), 2,2-azino-bis (3-ethyl-benzothizoline-6-sulfonic acid) (ABTS) radical scavenging activity, and ferric reducing antioxidant power (FRAP). The overall, antioxidant activity was higher in broths containing 1.0 g and 1.5 g DMS than in those containing 0.5 g DMS and the activity increased with increasing boiling time. Sinigrin was not detected in the control group, and no significant difference in sinigrin content was noted among broths containing different concentrations of DMS. A high glutamic acid content was detected in the control broth, whereas glutamic acid, aspartic acid, glycine, proline, alanine, and arginine were detected in the broths containing DMS. The free amino acid contents, particularly aspartic acid and glutamic acid contents, were high in umami. Volatile components, such as 2-propenyl-isothiocyanate (ITC), allylthiocyanate, n-butyl ITC, and 3-butenyl ITC, were detected in the DMS-containing broths. Sensory evaluation revealed that a higher amount of DMS added and a longer heating time increased the overall taste preference, and the difference was statistically significant. The purpose of this study was to present basic data on the quality characteristics of DMS-added broths to aid in the development of new products using DMS.

Properties of Quercus variabilis bio-oil prepared by sample preparation (시료 조건에 따른 굴참나무 바이오오일의 특성)

  • Chea, Kwang-Seok;Jo, Tae-Su;Choi, Seok-Hwan;Lee, Soo-Min;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.148-156
    • /
    • 2015
  • In this study the differences in the sample size and sample input changes as characteristics of bio-oil oak(Quercus variabilis), the oak 0.5~2.0 mm of the oak weighing 300~900g was processed into bio-oil via fast pyrolysis for 1.64 seconds. In this study, the physico-chemical properties of biooil using oak were investigated. Fast pyrolysis was adopted to increase the bio-oil yield from raw material. Although the differences in sample size and sample input changes in the yield of pyrolysis products were not significantly noticeable, increases in the yield of bio-oil accounted for approximately 60.3 to 62.1%, in the order of non-condensed gas, and biochar. When the primary bio-oil obtained by the condensation of the cooling tube and the seconary bio-oil obtained from the electric dust collector were measured separately, the yield of primary bio-oil was twice as higher than that of the secondary bio-oil. However, HHV (Higher Heating Value) of the secondary bio-oil was approximately twice as higher than that of the primary bio-oil by up to 5,602 kcal/kg. The water content of the primary bio-oil was more than 20% of the moisture content of the secondary bio-oil, which was 10% or less. In addition, the result of the elemental analysis regarding the secondary bio-oil, its primary carbon content was higher than that of the primary bio-oil, and since the oxygen content is low, the water content as well as elemental composition are believed to have an effect on the calorific value. The higher the storage temperature or the longer the storage period, the degree of the viscosity of the secondary bio-oil was higher than that of the primary bio-oil. This can be the attributed to the chemical bond between the polymeric bio-oil that forms during the storage period.

X-ray Diffraction and Infrared Spectroscopy Studies on Crystal and Lamellar Structure and CHO Hydrogen Bonding of Biodegradable Poly(hydroxyalkanoate)

  • Sato Harumi;Murakami Rumi;Zhang Jianming;Ozaki Yukihiro;Mori Katsuhito;Takahashi Isao;Terauchi Hikaru;Noda Isao
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.408-415
    • /
    • 2006
  • Temperature-dependent, wide-angle, x-ray diffraction (WAXD) patterns and infrared (IR) spectra were measured for biodegradable poly(3-hydroxybutyrate) (PHB) and its copolymers, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(HB-co-HHx) (HHx=2.5, 3.4, 10.5, and 12 mol%), in order to explore their crystal and lamellar structure and their pattern of C-H...O=C hydrogen bonding. The WAXD patterns showed that the P(HB-co-HHx) copolymers have the same orthorhombic system as PHB. It was found from the temperature-dependent WAXD measurements of PHB and P(HB-co-HHx) that the a lattice parameter is more enlarged than the b lattice parameter during heating and that only the a lattice parameter shows reversibility during both heating and cooling processes. These observations suggest that an interaction occurs along the a axis in PHB and P(HB-co-HHx). This interaction seems to be due to an intermolecular C-H...O=C hydrogen bonding between the C=O group in one helical structure and the $CH_3$ group in the other helical structure. The x-ray crystallographic data of PHB showed that the distance between the O atom of the C=O group in one helical structure and the H atom of one of the three C-H bonds of the $CH_3$ group in the other helix structure is $2.63{\AA}$, which is significantly shorter than the sum of the van der Waals separation ($2.72{\AA}$). This result and the appearance of the $CH_3$ asymmetric stretching band at $3009 cm^{-1}$ suggest that there is a C-H...O=C hydrogen bond between the C=O group and the $CH_3$ group in PHB and P(HB-co-HHx). The temperature-dependent WAXD and IR measurements revealed that the crystallinity of P(HB-co-HHx) (HHx =10.5 and 12 mol%) decreases gradually from a fairly low temperature, while that of PHB and P(HB-co-HHx) (HHx = 2.5 and 3.5 mol%) remains almost unchanged until just below their melting temperatures. It was also shown from our studies that the weakening of the C-H...O = C interaction starts from just above room temperature and proceeds gradually increasing temperature. It seems that the C-H...O=C hydrogen bonding stabilizes the chain holding in the lamellar structure and affects the thermal behaviour of PHB and its copolymers.

Analysis of Environment Factors in Pleurotus eryngii Cultivation House of Permanent Frame Type Structure (영구형 큰느타리버섯 재배사의 환경요인 분석)

  • Yoon Yong-Cheol;Suh Won-Myung;Lee In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.125-137
    • /
    • 2006
  • Pleurotus eryngii is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. To safely produce high-quality Eryngii all the yew round, it is required that the environmental factors be carefully controlled by well designed structures equipped with various facilities and control systems. At the commercial mushroom cultivation houses of permanent frame type (A, B), this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. This experiment was conducted for about two-year ken Nov. 2003 to Dec. 2005 in cultivation house. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Because the capacity of electric heater and air circulation were not enough, air temperatures in cultivation house before improvement of system were maintained somewhat lower than setting temperature, and maximum air temperature difference between the upper and lower growth stage during a heating time period was about 5.1. But the air temperatures after system improvement were maintained within the limits range of setting temperature without happening stagnant of air. Air temperature distribution was generally distributed uniform. Relative humidity in cultivation house before , improvement was widely ranged about $44{\sim}100%$. But as the relative humidity after improvement was ranged approximately $80{\sim}100%$, it was maintained within the range of relative humidity recommended. And $CO_2$ concentration was maintained about $400{\sim}3,300mg{\cdot}L^{-1}$ range. The illuminance in cultivation house was widely distributed in accordance with position, and it was maintained lower than the recommended illuminance range $100{\sim}200lx$. The acidity of midium was some lower range than the recommend acidity range of pH $5.5{\sim}6.5$. The yield was relatively ununiform. In case of bottle capacity of 1,300cc, the mushroom of the lowest grade was less than 3%. The consumption electric energy was quite different according to the cultivation season. The electric energy consumed during heating season was much more than that of cooling season.

Effect of Package Size and Pasteurization Temperature on the Quality of Sous Vide Processed Spinach (Sous Vide 가공 시금치의 품질에 미치는 포장단위 및 살균온도의 영향)

  • 장재덕;김기태;이동선
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.195-200
    • /
    • 2004
  • Microbial lethal value and nutrient retention of sous vide processed spinach were evaluated with mathematical model prediction and experimental trial for different package sizes and pasteurization temperatures. The package size covers 500 g, 1 kg and 2 kg, while the pasteurization temperature includes 80, 90 and 97$^{\circ}C$. The basic process scheme consists of filling blanched spinach into barrier plastic film pouch, sealing under vacuum, pasteurization in hot water with over pressure and final cooling to 3$^{\circ}C$. Pasteurization condition was designed based on attainment of 6 decimal inactivation of Listeria monocytogenes at geometric center of the pouch package by heating cycle, which was determined by general method. Heat penetration property of the package and thermal destruction kinetics were combined to estimate the retention of ascorbic acid and chlorophyll. Smaller packages with shorter pasteurization time gave better nutrient retention, physical and chemical qualities. Larger package size was estimated and confirmed experimentally to give higher pasteurization value at center, lower ascorbic acid and chlorophyll contents caused by longer heat process time. Lower pasteurization temperature with longer process time was predicted to give lower pasteurization value at center and lower ascorbic acid, while chlorophyll content was affected little by the temperature. Experimental trial showed better retention of ascorbic acid and chlorophyll for smaller package and higher pasteurization temperature with shorter heating time. The beneficial effect of smaller package and higher pasteurization temperature was also observed in texture, color retention and drip production.

The Development of Insecticidal Soaps and Organic Control of Aphid (CODEX 유기농업허용 살충비누 제조와 진딧물 방제연구)

  • Lee, Tae-Geun;Yoon, Sung-Hee;Park, Dong-Yun
    • Korean Journal of Organic Agriculture
    • /
    • v.10 no.3
    • /
    • pp.87-99
    • /
    • 2002
  • The development of insecticidal soaps made by various fatty acids and organic control for insect by using of insecticidal soap(fatty acid salts) were employed. And the results were as follows: 1. To determine the input volume of potassium hydroxide for saponification of fatty acids, there were compared to individual acid value of fatty acids. in case of coconut fatty acids for saponification was 266.3 mg of potassium hydroxide(266 g/1kg of fatty acid) was calculated. 2. To make the 25% soap content by coconut fatty acids, there was required for the 266g of potassium hydroxide and 3,459 liter of soft water. Then the liquor of soap was 4,644 liter. 3. The progress of insecticidal soap made by fatty acids was accomplished indirect heating and stirring reactor (1)to make the volume of potassium hydroxide solution and warming up(90$^{\circ}$) (2)input volume of individual fatty acid (3)more than 30 min stirring reaction (4)cooling progress. 4. Insecticidal value of insecticidal soap was observed more than 92% the dilution of 50 dilution solution in consecutive 5 days of 2 treatments of the 25% soap made by coconut fatty acids on the red pepper. And insecticidal value of insecticidal soap was observed more than 94% the 100 dilution solution in consecutive 5 days of 3 treatments of the 25% soap made by coconut fatty acids on red pepper and cabbage. 5. The treatment of two times of 25% soap made by coconut fatty acids at the 50 dilution solution and 100 dilution solution in spider mite on red bean has 100% insecticidal value. 6. There was no observation phytotoxic sypmtons on red pepper in field, except for 25% soap made by carprylic acid. 7. Over the two times over 0.1% in addition of isopropyl alcohol was to improvement the insecticidal effect, but there was no effect in addition of diatomaceous earth.

  • PDF

Analysis of Actual State of Facilities for Pleurotus eryngii Cultivation - Based on Western Gyeongnam Area - (큰느타리버섯 재배사의 실태분석 - 서부경남지역을 중심으로 -)

  • Yoon Yong Cheol;Suh Won Myung;Yu Chan
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.217-225
    • /
    • 2004
  • This study was performed to provide the basic knowledge about the mushroom cultivation facilities. Classified current status of cultivation facilities in Gyeongnam province was investigated by questionnaire. The structure of Pleurotus eryngii cultivation facilities can be classified into the simple and permanent frame type. The simple frame structures were mostly single-span type, on the other hand, the permanent frame structures were more multi-span than simple structures. And the scale of cultivation facilities was very different regardless of structural type. But as a whole, the length, width and ridge height were prevailing approximately 20.0 m, $6.6\~7.0m$ and $4.6\~5.0m$ range, respectively. The floor area was about $132\~160\;m^2$, and floor was built with concrete to protect mushrooms from various harmful infection. The roof slope of the simple and permanent type showed about $41.5^{\circ}\;and\;18.6\~28.6^{\circ}$, respectively. The width and layer number of growing bed for mushroom cultivation were around $1.2\~1.6m$, 4 layers in common, respectively. Most of year round cultivation facilities were equipped with cooler, heater, humidifier, and ventilating fan. Hot water boiler was the most commonly used heating system, the next was electric heater and then steam boiler. The industrial air conditioner has been widely used for cooling. And humidity was controlled mostly by ultra-wave or centrifuging humidifier. But some farmers has been using nozzle system for auxiliary purpose. More then $90\%$ of the mushroom house had the independent environment control system. The inside temperature was usually controlled by sensor, but humidity and $CO_2$ concentration was controlled by timer for each growing stage. The capacity of medium bottle was generally 850 cc and 1100cc, some farms used 800 cc, 950 co and 1,250 cc. Most of mushroom producted has been usually shipped to both circulating company and joint market.

Effect of Soil Temperature on the Emergence - Speed of Rice and Barnyardgrasses under Dry Direct - Seeding Condition (토양온도(土壞溫度)가 벼와 피의 출아속도(出芽速度)에 미치는 영향(影響))

  • Kwon, Y.W.;Kim, D.S.;Park, S.W.
    • Korean Journal of Weed Science
    • /
    • v.16 no.2
    • /
    • pp.81-87
    • /
    • 1996
  • Seeds of rice, cv. Ilpoom, and barnyardgrasses(Echinochloa crus-galli, vars. oryzicola, crux-galli, and praticola) were sown for a characterization of their responses to temperature during emergence under a dry direct-seeded condition. A laboratory-made aluminum block apparatus for emergence-temperature control conferred a linear continuous temperature gradient from 10 to $30^{\circ}C$ to the seeds from cooling to heating ends of the apparatus. The lowest temperature for emergence was $12.3^{\circ}C$ for rice cv. Ilpoom, and $11.0^{\circ}C$ for the three varieties of Echinochloa spp.. Percent emergence of rice increased sharply with an increase in temperature by ca. $20^{\circ}C$, then leveled-off, while those of barnyardgrasses increased almost linearly with temperatures up to $30^{\circ}C$. In rice the time required for emergence after seeding was shortened exponentially with increased temperature while those for barnyardgrasses were shortened almost linearly from 11 to $30^{\circ}C$. The temperature-response characteristic of rice in emergence-speed was almost the same among those for the 1st emergence, emergence by 25, 50, 75%, or average emergence time. At $13^{\circ}C$, $346.7^{\circ}C$ days of accummulated temperature(26.67 days) were required for the 1st emergence in rice while 131.7, 136.0, and $138.7^{\circ}C$ days(10.13, 10.46, and 10.67 days) were required for the 1st emergence in E. spp., vars. crus-galli, praticola, and oryzicola, respectively. Greater cold tolerance and increasingly faster emergence of barnyardgrasses than rice below $20^{\circ}C$ seem to render the barnyardgrasses as much more competitive than rice at lower temperatures.

  • PDF

Metamorphic P-T Paths from Devonian Pelitic Schists from the Pelham Dome, Massachusetts, USA (뉴잉글랜드 펠암돔 주변부 데본기 변성 이질암의 변성 온도-압력 경로)

  • 김형수
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.211-237
    • /
    • 2000
  • Major element zoning has been analyzed in garnet porphroblasts obtained from the Grt-St and Ky-Grt-St grade assemblages in Zones I on the northern flank of the Pelham Dome, north central Massachusetts. These porphyroblasts grew during multiple phases of deformation and meta-morphism revealed by the inclusion trail geometry plus the chemical zoning patterns within garnet porphyroblasts. Unusual zoning patterns, including zoning reversals and gradient changes in XMn, zlgzag patterns in Fe/(Fe +Mg) and staircase-shaped patterns in XCa, are coincident with textural truncations and other changes in microstructure within the garnet porphrublasts. Chemical variations in plagioclase, biotite, muscovite and staurolite combined with inclusion trail geometry and petrography reveal that the garnet zoning patterns are modified by combinations of the following. (1) Uni-and divariant reactions involving garnet consumption(Grt+ Chl+Ms=St+Bt+Qtz + $H_2$O) and production(St+Ms + Qtz= Bt+ Grt +A1$_2$$SiO_{5}$ + $H_2$O). (2) Deformation induced episudic ionit dissolution, preferential diffusion and re-distribution during foliation development. (3) P-T changes during growth of the porphyroblasts. The P-T paths combined with petrographic and inclusion trail morphology observations consist of two pattens; (1) heating/compression during NW-SE shortening; and (2) decompression with cooling during NNW-SSE shortening. Based on temperature-time(T-t) geochronological data and late-Paleozoic tectonic model, Alleghanian metamorphism, which is the result of heterogeneous shearing concentrated along the boundary between the Abalone Terrane(Pelham dome) and cover rocks(Bronson Hill Terrane), has produced Ky-St-Ms mineral assemblage during Pennsylvanian(290-300 Ma) in Shutesbury area. However, temperature of alleghanian metamorphism was not high enough to form garnet and staurolite in the Northfiled syncline area. Alleghanian metamorphism has affected only the matrix due to heterogeneous shearing in the study area.

  • PDF

Prediction of Transpiration Rate of Lettuces (Lactuca sativa L.) in Plant Factory by Penman-Monteith Model (Penman-Monteith 모델에 의한 식물공장 내 상추(Lactuca sativa L.)의 증산량 예측)

  • Lee, June Woo;Eom, Jung Nam;Kang, Woo Hyun;Shin, Jong Hwa;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.182-187
    • /
    • 2013
  • In closed plant production system like plant factory, changes in environmental factors should be identified for conducting efficient environmental control as well as predicting energy consumption. Since high relative humidity (RH) is essential for crop production in the plant factory, transpiration is closely related with RH and should be quantified. In this study, four varieties of lettuces (Lactuca sativa L.) were grown in a plant factory, and the leaf areas and transpiration rates of the plants according to DAT (day after transplanting) were measured. The coefficients of the simplified Penman-Monteith equation were calibrated in order to calculate the transpiration rate in the plant factory and the total amount of transpiration during cultivation period was predicted by simulation. The following model was used: $E_d=a*(1-e^{-k*LAI})*RAD_{in}+b*LAI*VPD_d$ (at daytime) and $E_n=b*LAI*VPD_n$ (at nighttime) for estimating transpiration of the lettuce in the plant factory. Leaf area and transpiration rate increased with DAT as exponential growth. Proportional relationship was obtained between leaf area and transpiration rate. Total amounts of transpiration of lettuces grown in plant factory could be obtained by the models with high $r^2$ values. The results indicated the simplified Penman-Monteith equation could be used to predict water requirements as well as heating and cooling loads required in plant factory system.