• 제목/요약/키워드: Heating source

검색결과 897건 처리시간 0.028초

유출지하수열원 지열히트펌프의 냉난방성능 (Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

OEMGD 알고리즘을 이용한 건물 냉난방용 최적 에너지 믹스 모델에 관한 연구 - 지열히트펌프와 지역냉난방 시스템을 중심으로 (A Study on the Optimal Energy Mix Model in Buildings with OEMGD Algorithm Focusing on Ground Source Heat Pump and District Heating & Cooling System)

  • 이기창;홍준희;이규건
    • 한국지역사회생활과학회지
    • /
    • 제27권2호
    • /
    • pp.281-294
    • /
    • 2016
  • This study was conducted to promote consumer interest in Geothermal Heat Pump (Ground Source Heat Pump, GSHP) and district heating and cooling (District Heating & Cooling, DHC) systems, which are competing with each other in the heating and cooling field. Considering not only the required cost data of energy itself, but also external influence factors, the optimal mix ratio of these two energy systems was studied as follows. The quantitative data of the two energy systems was entered into a database and the non-quantitative factors of external influence were applied in the form of coefficients. Considering both of these factors, the optimal mix ratio of GSHP and DHC systems and minimum Life Cycle Cost (LCC) were obtained using an algorithm model design. The Optimal Energy Mix of GSHP & DHC (OEMGD) algorithm was developed using a software program (Octave 4.0). The numerical result was able to reflect the variety of external influence factors through the OEMGD algorithm. The OEMGD model found that the DHC system is more economical than the GSHP system and was able to represent the optimal energy mix ratio and LCC of mixed energy systems according to changes in the external influences. The OEMGD algorithm could be of help to improve the consumers' experience and rationalize their energy usage.

지역난방의 환경개선효과 측정에 관한 연구 (A Study on the Enviromental Impact of District Heating System)

  • 손양훈;박주헌;조전혁
    • 자원ㆍ환경경제연구
    • /
    • 제10권3호
    • /
    • pp.367-386
    • /
    • 2001
  • In this paper we analyze the environmental advantages of district heating system. We construct three econometric models to analyze the energy consumption and economic cost as well as the emission of the major pollutants like $SO_x$, $NO_x$, DUST, and $CO_2$. As the size of heating supply is larger, the district heating system is evaluated to be better than other heating systems environmentally and costly in the long run. Especially, the district heating reduces $SO_x$ emission significantly when the size of heat production is large. But the advantages of district heating system are very sensitive to the fuel mix and heat source.

  • PDF

Modified FLIC법과 아크 모델을 이용한 차단부내 초기 아크 유동 해석 (The Analysis of Arc-Flow Interaction in GCB Using the Modified FLIC Method and the Arc Model)

  • 신승록;김홍규;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.366-368
    • /
    • 1999
  • In this paper, the analysis of the gas flow in the GCB is presented by using the modified FLIC method and the arc model. The modified FLIC method has two step calculation procedure. And it adopts the upwind scheme, which results in the stability.[1] The arc model used in this paper makes arc a heating source in the energy equation. The heating source is composed of ohmic heating and radiation energy transfer. And the type of the GCB in this paper is a auto-expansion type.[2]

  • PDF

열원의 위치에 따른 평판형 히트파이프의 열적 성능 (Thermal Performance of Flat-strip Heat Pipe with Various Heat Source Locations)

  • 박수용;부준홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1406-1411
    • /
    • 2004
  • A series of experiments was conducted to examine characteristics of a grooved flat-strip heat pipe having multiple heat sources. The inner grooves of the heat pipe have the aspect ratio of 1 to $2.5(0.42{\times}1.05$ mm) whose pitch was 0.6 mm. Four block heaters ($10{\times}20$ mm) were placed in the evaporator section at intervals of 20 mm and six different heating modes were tested. The maximum surface heat flux of 80 $W/cm^2$ was achieved while the operating temperature was kept below $100^{\circ}C$, In the nearest heating mode (from the condenser location), the heat pipe exhibited more stable temperature distribution than the far heating mode where the heaters is located furthest from the condenser.

  • PDF

청소년 수련관의 열원설비 대안별 생애주기 비용에 관한 연구 (Analysis of Life Cycle Cost for Heat Source Equipments in Buildings for Adolescent Trainees)

  • 안창환;방승기;백용규
    • KIEAE Journal
    • /
    • 제5권3호
    • /
    • pp.25-31
    • /
    • 2005
  • Computer simulations were performed for Heating Ventilating and Air-Conditioning (HVAC) systems to figure out more efficient maintenance methods for the building used for adolescent trainees. This study aims at suggesting design alternatives for optimum operation and performing life cycle cost (LCC) for each alternative. First, the capacity of the heat source equipment was determined using annual maximum heating and cooling loads. Annual loads were calculated and applied to the alternative for the purpose of calculating annual energy cost. Second, several types of data were collected to predict energy cost. Finally, the pay back period for each alternative was calculated using total cost estimation during standard duration period. This study indicates that the absorption chiller that does not occupy most part of a mechanical room, and does not need much operation cost was most economical.

상-파넬 히-팅의 해석법 (Steady and Transient Solution of heat Conduction from hurried Pipes of panel heating Slab)

  • 이건
    • 대한설비공학회지:설비저널
    • /
    • 제3권3호
    • /
    • pp.185-190
    • /
    • 1974
  • Floor panel heating system is popular in Korea as dwelling house heating system. There are two methods for keeping floor surface warm. One method is delivering warm air under the floor such as Roman Hypocaust and Korean traditional Ondol. The other method is imbedding hot water pipes into the concrete floor slab. This paper gives basic equations for steady and transient solutions of heat conduction from hurried pipes. For steady-state solution, fin Efficiency Method and Sink and Source Method were introduced. Sink and Source Method is applied to transient state and basic solution is given in the form of Exponential Integral Function. Numerical solutions can be solved easily by digital computer from these equations.

  • PDF

선박용 프로펠러 주조시 수축결함 제어용 압탕가열장치 적용 (Application of the Riser Heating Equipment to Control Shrinkage defects for Casting of the Propeller)

  • 문현준;김정섭;박태동;이동조;윤석환
    • 한국주조공학회지
    • /
    • 제28권2호
    • /
    • pp.74-78
    • /
    • 2008
  • An integrated riser heating equipment has been developed to control shrinkage defects originated from casting of a marine propeller. The integrated riser heating equipment is composed of up/down moving parts, heating power source parts and an integrated controller. Heat capacity putting into the riser was calculated quantitatively on the base of a heat transfer analysis, which consisted of the establishment of heating model and the theoretical analysis for heat transfer. The riser heating equipment was evaluated through arc heating and electro-slag heating method. With the results, the arc type heating method was selected by considering high thermal efficiency, inexpensive cost, and convenient workship. This equipment improves the quality of a propeller casting and the poor working environment.

열 파이프용 수평 축열조에서의 열 입력이 축열에 미치는 영향 (An Effect of Heat Input on Thermal Storage for Horizontal Thermal Storage Tank with Heat pipe)

  • 박이동;정운철
    • 태양에너지
    • /
    • 제16권2호
    • /
    • pp.39-47
    • /
    • 1996
  • 본 연구에서는 실제 열 파이프용 수평 축열조에서 등간격인 heating pad 수와 위치 및 공급열량을 변화시키면서 축열조내의 순수 Plume 유동특성을 파악하였다. 동일한 heating pad수를 가지고 집중 배치 형태와 분산 배치 형태를 취하였을 때 집중 배치 형태로 취하는 것이 $5{\sim}6%$ 정도의 더 높은 효율을 얻었다. 따라서 열 파이프용 수평 축열조에서 heating pad를 장착할 때 동일한 heating pad의 수에서는 집중(concentration)배치형태로 설계하는 것이 효과적임을 알 수 있다.

  • PDF

R123 열원 적용 증발식 담수 시스템 특성 연구 (Characteristics of Solar Desalination System Using Refrigerant-123 As a Heating Source)

  • 윤상국;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제30권3호
    • /
    • pp.33-38
    • /
    • 2010
  • The evaporative desalination system using solar thermal energy would be the efficient and attractive method to get fresh water from brine due to low carbon dioxide generation. In this research the solar desalination system as a heating source of refrigerant R123 in the evaporator was considered. The circulation of refrigerant in the evaporator can reduce the energy consumption of the system, because of using the latent heat of the refrigerant 123 instead of the sensible heat of present hot water. The system was comprised of the single-stage fresh water production unit on the capacity of 1ton/day with shell and tube type evaporator, heaters instead of solar collector to supply the proper heat to refrigerant, and refrigerant and brine circulation systems. Various operating flowrate and temperature ranges were varied in the experiments to get the optimum design data. The results showed that the optimum flow rate of brine feed rate to evaporator was 1.2Liter/min, and the yield of fresh water was increased as higher temperature of feed brine. It was confirmed that the circulation flowrate of heating source of refrigerant was decrease of one fifth of the present warm water system, and very efficient system for solar desalination.