• Title/Summary/Keyword: Heating slip form

Search Result 3, Processing Time 0.02 seconds

A study on the slip-up speed of a shaft using heating slip form (히팅슬립폼을 적용한 수직구 구조물의 상승속도에 관한 연구)

  • Ko, Eomsik;Lee, Sanghun;Park, Jongpil;Zi, Goangseup;Kim, Changyong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.811-823
    • /
    • 2019
  • Slip form method is applied to many cases of a shaft these days because it is safer, more economical and faster than cast-in-place method. Slip-up height of the method is approximately 2.5 to 4.0 m/day. If the temperature of concrete is outside the range of 10 to 30℃, the effects of changes in strength or elastic characteristics are significant. Therefore, it is difficult for slip-up speed to be higher than 3 m/day during winter construction. In addition, concrete has heat caused by hydration, which causes temperature cracking of hardened concrete. Therefore, temperature control of concrete curing is necessary for the continuous slip-up of slip form. In this study, the rebound hardness, time of ultrasonic waves propagation, heat of hydration, and external temperature are measured by developing heating panels and test devices for the continuous slip-up. Based on this, heating slip form is manufactured; this was applied to "Kimpo sites" and "Sinwol sites". The compared slip-up speed samples were 1.9 m/day or 0.200 m/hr on average at Gimpo sites (08:00~17:30) and 2.0 m/day or 0.210 m/hr at Sinwol sites.

Setting Time and Strength of Slip-form Method Applied Caisson in Low-temperature Period (슬립폼공법 적용된 동절기 케이슨의 온도에 따른 응결시간 및 압축강도)

  • Kim, Bong-Joo;Kim, Jae-Hun;Kim, Chan-Soo;Jo, Ho-Kyoo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.1-7
    • /
    • 2006
  • In the harbor construction work, caisson is made by slip-form method and curing temperature of caisson concrete need heating in the low-temperature. To get the setting time and compression strength of slip-form method applied caisson at various curing temperature. The curing temperature is divided to the temperature of slip-form and the temperature of second curing curtain. In consideration of setting time, compression strength of concrete and form-removal time, the best temperature is $25^{\circ}C$ at 6 hours slip-form curing time.

Induction Heating of Cylinderical MoSi2-based Susceptor (실린더형 MoSi2계 발열체의 유도가열 적용)

  • Lee, Sung-Chul;Kim, Yo Han;Myung, Jae-ha;Kim, Bae-Yeon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.553-558
    • /
    • 2019
  • In present study, the cylindrical susceptor by the slip casting method was designed to apply high-temperature induction heating by using $(Mo,W)Si_2$ ceramics. $MoSi_2$-based materials were synthesized by SHS (Self-propagating High-temperature Synthesis) method. The phase and crystal structure of $MoSi_2$-based materials were confirmed by XRD analysis. The shape of cylindrical mold was synthesized for various thickness by using the slip casting method. Finally, the susceptor for induction heating was processed by sintering and heat treatment to form $SiO_2$ layer, which was confirmed on the surface of susceptor by SEM/EDS analysis. To evaluate the heating performance of $(Mo,W)Si_2$ cylinder susceptor, we measured the maximum surface temperature and heating rate in comparison with the rod heating element under constantly applied power. The induction heating of the $(Mo,W)Si_2$ cylinder showed excellent heating performance, reaches the maximum temperature of $1457^{\circ}C$, with the average heating rate of $19^{\circ}C/s$ at 2 kW