• 제목/요약/키워드: Heating sheet

검색결과 220건 처리시간 0.023초

표면조도 특성에 따른 저항 점 용접성 평가 및 너깃 형성 고찰 (Evaluation on Resistance Spot Weldability and Nugget Formation of Surface Roughness Treated Steel Sheet)

  • 김기홍;최영민;김영석;임영목;유지훈;강남현;박영도
    • Journal of Welding and Joining
    • /
    • 제26권5호
    • /
    • pp.79-89
    • /
    • 2008
  • With the increased use of surface textured steel sheet in body-in-white assembly, resistance spot weldability of these steels is considered to be an important subject. This study evaluated nugget formation and weldability by measuring dynamic resistance with various weld pressure, current, and weld time for steel sheet with two different surface roughnesses. The surface roughness for T-H steel ($R_{a}=1.70\;{\mu}m$) was higher than that for T-L steel ($R_{a}=1.33\;{\mu}m$), and resulted in increased contact resistance and heating for T-H steel spot welding. Therefore, at low weld current and weld cycle ranges, the T-H steel showed better weldability over the T-L steel. The evaluations of weld interface showed that the fusion zone in the T-H steel sheet was continuous in contrast to discontinuous fusion zone for T-L steel sheet at the same welding conditions. A comparison of dynamic resistance and tensile-shear strength (TSS) between T-H and T-L steel sheet suggested that high surface roughness provided larger heating at early cycle of welding and larger TSS.

절연절단법을 이용한 프로브 빔의 제작 (Fabrication of Probe Beam by Using Joule Heating and Fusing)

  • 홍표환;공대영;이동인;김봉환;조찬섭;이종현
    • 센서학회지
    • /
    • 제22권1호
    • /
    • pp.89-94
    • /
    • 2013
  • In this paper, we developed a beam of MEMS probe card using a BeCu sheet. Silicon wafer thickness of $400{\mu}m$ was fabricated by using deep reactive ion etching (RIE) process. After forming through silicon via (TSV), the silicon wafer was bonded with BeCu sheet by soldering process. We made BeCu beam stress-free owing to removing internal stress by using joule heating. BeCu beam was fused by using joule heating caused by high current. The fabricated BeCu beam measured length of 1.75 mm and width of 0.44 mm, and thickness of $15{\mu}m$. We measured fusing current as a function of the cutting planes. Maximum current was 5.98 A at cutting plane of $150{\mu}m^2$. The proposed low-cost and simple fabrication process is applicable for producing MEMS probe beam.

콘크리트 표면처리와 가열조건에 따른 섬유쉬트와 콘크리트의 부착강도에 관한 연구 (A Study on Bond Strength between Fiber Sheet and Concrete for Concrete Surface Preparation and Heating Condition)

  • 안상호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.201-207
    • /
    • 2002
  • An advanced fiber sheet has been widely used for strengthening of the concrete structures due to its excellent properties such as high strength and light weight. Bond strength is very important in strengthening the concrete structures using an advanced fiber sheet. This research examines the bond behavior between fiber sheet and concrete, investigates the bond strength by the direct pull-out test and the tensile-shear test. To obtain the tensile-shear strength a double-face shear type bond test is conducted. The primary test variables are the types of concrete surface roughness (disk-grinding/chipping) and retrofitting methods (bonding/injection). Thirty specimens were tested to evaluate the bond strength. It is shown that the average bond strength between fiber sheet and concrete by the direct pull-out test and the tensile-shear test is $22.3{\sim}23.1kgf/cm^2$ $17.92{\sim}19.75kgf/cm^2$, respectively.

반용융 단조를 위한 소재의 유도 가열 (Induction Heating of a Billet for Semi-Solid Forging)

  • Park, J.C.;Park, H.J.;Kim, B.M.
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.15-20
    • /
    • 1997
  • Semi-solid forging is a compound forging technology to develop conventional forging process. Among several steps of semi-solid forging process, the heating step of a billet prior to semi-solid forging step is necessarily required to obtain globular microstructure. For the forming operation to work properly, it is also important to heat the billet uniformly for the uniformity of solid-liquid distribution. To satisfy these requirements, induction heating has been generally used for a long time. This paper presents the method to find heating condition and the temperature distribution inside a billet with a induction heating apparatus by comparing the computer simulation with experiment for aluminium alloys A12024 and A356.

  • PDF

박판재 용접 구조물의 선상 가열 교정에서 최적 조건의 선정에 관한 연구 (A Study on the Optimum Line Heating Condition for Straightening a Thin Plate Welded Structure)

  • 박준형;김재웅
    • Journal of Welding and Joining
    • /
    • 제29권2호
    • /
    • pp.40-45
    • /
    • 2011
  • The purpose of this study is to establish the optimum line heating condition to straighten the excessive bending distortion of a thin plate welded structure. For it, the extensive FEA and experiments were performed to evaluate the effect of heat source, heating speed and position on the straightening of a thin plate welded structure. In accordance with the results obtained by FEA and experiments, the straightening effect of line heating was strongly depends on the variables used in this study. With the results, the optimum line heating condition was established by using the response surface method and verified through comparing it with the numerical analysis result.

국부가열효과를 활용한 다점성형공정기술 (Multi-point Dieless Forming Technology Using Local Heating Effect)

  • 박지우
    • 소성∙가공
    • /
    • 제31권2호
    • /
    • pp.96-102
    • /
    • 2022
  • The multi-point dieless forming technology is one of flexible forming technologies that can form 3D curved surfaces of various shapes utilizing a lot of punch arrangements. A new technology that can simultaneously apply high-temperature forming and flexible forming technology by fusing local heating effect to such multi-point dieless forming technology was proposed in the present study. A simple local heating multi-point dieless forming apparatus was fabricated to confirm the applicability of this new technology. This equipment was designed to be used as a heat source by inserting heating cartridges in the head of the multi-point punch. Cartridges were used for all individual punches. Using the manufactured equipment, the time to raise the temperature to the target temperature and the surface temperature of the punch head part in contact with the plate were measured. In addition, forming experiments were carried out according to sheet material temperature (100 ℃, 200 ℃, and 300 ℃) to obtain forming results for each condition. The applicability and feasibility of this technology were confirmed through experimental results.

AZ3l 마그네슘 판재의 더블 싱크형 딥드로잉 공정의 성형성에 관한 실험적 연구 (Experimental Study on the Formability of Simultaneous Deep Drawing of Circular and Rectangular Cups with AZ31 Magnesium Alloy)

  • 권기태;강석봉;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.149-153
    • /
    • 2008
  • Since magnesium alloy sheets have been employed in industrial field which requires the light weight and thin engineering components, most of researches have been focused on the formability of magnesium ahoy sheet. In warm press forming of magnesium alloy sheet, it is important to control the sheet temperature by heating the sheet in closed die. When forming a commercial AZ31 magnesium alloy sheets which are 0.5mm and 1.0mm thick, respectively, time arriving at target temperature and temperature variation in magnesium alloy sheet have been investigated. Sheet metals were mostly formed in simple shapes such as circular or rectangular. Few studies about forming of complex shapes were reported. Thus, the formability of magnesium alloy sheet for complex shapes is investigated. The process variable for a double sink shape deep drawing with circular and rectangular shape was investigated by varying temperature, velocities, and clearances. Accordingly, temperature, velocities, and clearances suitable for forming were suggested through investigating the thickness variation of the product.

  • PDF

Analysis of the Efficiency of Improved Bubble Sheet for Heat Curing in Cold Weather

  • Choi, Hyun-Kyu;Son, Myung-Sik;Han, Cheon-Goo
    • 한국건축시공학회지
    • /
    • 제13권1호
    • /
    • pp.38-47
    • /
    • 2013
  • When building with concrete in cold weather, an insulation method of heat curing must be determined, and a holistic curing plan that considers the characteristics of structures, the heat loss coefficient of a curing sheet, the joint condition of the curing materials and the quantity of heat produced by a heating apparatus is an essential prerequisite for protection against early frost damage. But on a number of national construction sites, there have been serious problems in cold weather concreting due to the unreliability of the information obtained from practical experience. In the construction field in Japan, there is a specification for heat curing prepared by Japanese Architectural Society, which provides an equation for calculating heat quantity. It is also necessary to adopt a detailed specification for a standard heat curing method that is applicable to all national construction sites. In this study, the effect of bubble sheets on the economic feasibility of cold weather concrete is investigated through a comparison with the blue sheets commonly prescribed in national construction sites. In conclusion, this study found that bubble sheets had the effect of reducing the cost of curing materials and the fuel cost consumed by a heating apparatus, compared to the use of blue sheets.

국부가열장치를 이용한 온간 무금형 점진 성형 (Warm Incremental Forming with Local Heating Apparatus)

  • 김상우;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.349-353
    • /
    • 2008
  • A fundamental study on warm incremental forming of a magnesium alloy sheet has been carried out. In order to enhance the incremental formability of the magnesium alloy sheet, a local heating device was newly designed and manufactured. Through the incremental forming tests of AZ31 under various forming conditions, the effects of process parameters such as the temperature, feeding depth per cycle, and inclination angle on the incremental formability of AZ31 were investigated. In addition, conventional FLDs at elevated temperatures were constructed experimentally and applied to predict the forming failure.

  • PDF