• Title/Summary/Keyword: Heating process

Search Result 2,034, Processing Time 0.042 seconds

Rapid Surface Heating Promotes Laser Desorption Ionization of Thermally Labile Molecules from Surfaces

  • Han, Sang Yun
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.91-95
    • /
    • 2016
  • In recent years, matrix-free laser desorption ionization (LDI) for mass spectrometry of thermally labile molecules has been an important research subject in the pursuit of new ionization methods to serve as alternatives to the conventional matrix-assisted laser desorption ionization (MALDI) method. While many recent studies have reported successful LDI of thermally labile molecules from various surfaces, mostly from surfaces with nanostructures, understanding of what drives the LDI process still requires further study. This article briefly reviews the thermal aspects involved in the LDI mechanism, which can be characterized as rapid surface heating. The thermal mechanism was supported by observed LDI and postsource decay (PSD) of peptide ions produced from flat surfaces with special thermal properties including amorphous Si (a-Si) and tungsten silicide ($WSi_x$). In addition, the concept of rapid surface heating further suggests a practical strategy for the preparation of LDI sample plates, which allows us to choose various surface materials including crystalline Si (c-Si) and Au tailorable to specific applications.

HEAT TRANSFER ANALYSIS ON THE PREFORM HEATING AND THE GLASS FIBER DRAWING IN A GRAPHITE FURNACE FOR OPTICAL FIBER MANUFACTURING PROCESS (광섬유 생산공정용 퍼니스 내의 모재 가열 및 유리섬유 인출에 대한 열전달 해석)

  • Kim, K.;Kim, D.;Kwak, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.88-91
    • /
    • 2011
  • Glass fiber drawing from a silica preform is one of the most important processes in optical fiber manufacturing. High purify silica preform of cylindrical shape is fed into the graphite furnace, and then a very thin glass fiber of 125 micron diameter is drawn from the softened and heated preform. A computational analysis is performed to investigate the heat transfer characteristics of preform heating and the glass fiber drawing in the furnace. In addition to the dominant radiative heating of preform by the heating element in the furnace, present analysis also includes the convective heat transport by the gas flowing around the preform that experiences neck-dawn profile and the freshly drawn glass fiber at high fiber drawing speed. The computational results present the effects of gas flow on the temperature of preform and glass fiber as well as the neck-down profile of preform.

  • PDF

Adhesion between the Nylon Cylinder and Steel Shaft by Expansion Fit and Induction Heating (나일론 실린더와 강축의 열박음과 유도가열에 의한 접합의 연구)

  • Choi Sin-Jin;Kang Suk-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.139-147
    • /
    • 2005
  • The lubricant impregnated MC nylon has good frictional properties, but its mechanical strength is inferior to steel for the mechanical elements. For the tribological application Nylon as gears, sliding bearings, cam and etc, the steel shafts are fitted in pre-heated nylon cylinder by a process of interference expansion fit and bonded by induction heating method. The joint shear strength of the two materials was measured by a universal test machine. From the study, the adhesive shear strength between these two materials was affected by the factors of the interference between nylon and steel, the size of nylon cylinder, knurl of steel shaft and inducting heating conditions. The most effective jointing conditions were analyzed and decided for the practical application in the industry.

A Two-Dimensional Simulator for Plate Forming by Line Heating (선상가열(Line Heating)에 의한 평판가공 Simulator 연구)

  • Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.191-200
    • /
    • 1992
  • In order to simulate the line heating process which is a three-dimensional transient thermo elastic plastic state, a simple modified strip model is suggested. First attempt is made to verify the validity of the model using a finite element program, and the result gives good agreement with the plate theory where conventional two-dimensional model fails totally.

  • PDF

Operational Strategy of Anaerobic Digesters Considering Energy Balance (에너지수지를 고려한 혐기성소화시설의 운영방안)

  • Hong, Seong-Gu;Kwun, Soon-Kuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.59-66
    • /
    • 2008
  • Anaerobic digestion system is getting more attractive in that it produces biogas in the process of organic waste stabilization. Net energy production is important when biogas production is concerned. In this study, net energy production was evaluated with respect to biogas production and heat losses in a hypothetical digester. Under the condition of digester operation with slurry inflow of 5% of TS, additional fuel is required to maintain digester temperature during the winder season. Substrate therefore, needs to have higher VS contents through co-digestion of silage or food waste that has greater values of methane production rate. Heating input slurry is important in cold season, which covers over 80% of heating requirement. Heat recovery from digestate is valuable to reduce the use of biogas for heating. It seems desirable to minimize slurry inflow when temperature is very low. Psychrophilic digestion may be a feasible option for reducing heating requirement.

A Study on a New Hybrid Induction Heating System for Laser Printer (Laser Printer용 Hybrid 유도가열 시스템 특성에 관한 연구)

  • Chae, Young-Min;Kim, Jin-Ha;Kwon, Joong-Gi;Han, Sang-Yong;Sung, Hwan-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.466-468
    • /
    • 2005
  • Recently, the demand for the development of high quality and high speed laser printer and efficient power utilizations are required. Among complicate electro-mechanic devices in laser printer, the toner fusing unit consumes above 90[%] of all electrical energy needed for printing devices. Therefore, the development of more effective energy-saving toner fusing process becomes a significant task of much great demand. Generally, there are several way to implement fusing unit, among them this paper present a new hybrid induction heating method. The proposed induction heating method enables to increase coupling coefficient between heating coil and heat roller also to Increase total energy transfer efficiency. Therefore the proposed IH inverter system provide very fast W.U.T.(Warm UP Time), also high efficiency. Through experimental result, the proposed control system is verified.

  • PDF

The optimal window system of office buildings considering energy efficiency (에너지 효율로 본 상업용 건물의 적정 창호에 관한 연구)

  • Yoo, Ho-Chun;Oh, Young-Ho;Park, Seung-Kil
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.53-60
    • /
    • 2005
  • The purpose of this study is to improve energy efficiency of windows in office buildings through the evaluation of their heating, cooling and illumination load. Energy efficiency is influenced by window size which is determined at the early stage of building design. The process of this study is as follows. First, energy performance is analysed according to the various rates of windows through computer simulation (ECOTECT). Then, the annual heating, cooling and illuminating loads according to the different window sizes are compared one another. Results indicated that the optimal window size considering energy efficiency is 50% of the surface area. When the window size is 50% of the surface area, annual maintenance expense is also smallest. Since the cost of cooling is larger than that of heating, too low indoor air temperature in summer is unfavorable based on the reasonable annual maintenance expenses.

Processing of Purees from Pumpkin and Sweet-Pumpkin (호박 및 단호박을 이용한 퓨레 제조)

  • 허수진;김준한
    • Food Science and Preservation
    • /
    • v.5 no.2
    • /
    • pp.172-176
    • /
    • 1998
  • This study was conducted to develop purees from pumpkin and sweet-pumpkin. Soluble solids in pumpkins were increased as heating time increase. The maximum yield of puree from sweet-pumpkin marked 78.2% when in prepared at 121$^{\circ}C$ for 60 minutes heating, but puree from pumpkin was 53.2% at 121$^{\circ}C$ for 40 minutes heating. Soluble solid and yield of pumpkin purees were increased with enzyme treatment. but viscosity was deceased remarkably. Hunter's a and b values of puree from sweet-pumpkin were higher than puree from pumpkin, and it was considered due to higher content of carotenoid. Organoleptic qualities of puree from pumpkin and sweet-pumpkin were investigated by 5-point scale and the most effective heating time was 40 minutes at 121$^{\circ}C$.

  • PDF

Resonant Network Design and Verification of Induction Cooker for Heating Nonmagnetic Vessel (비자성체 용기 가열을 위한 Induction Cooker 공진 네트워크 설계 및 검증)

  • Jang, Eun-Su;Park, Sang-Min;Joo, Dong-Myoung;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.504-509
    • /
    • 2017
  • This paper proposes a procedure for designing a resonant network for induction cookers that enables the induction heating of magnetic and non-magnetic vessels. In order to design such network, the range of operating frequency must be determined according to the material of the vessels by measuring several parameters, such as equivalent resistance and inductance, which are reflected in the working coil of the vessels. Through this process, the capacitance of the resonant capacitor is determined. The PSIM simulation and experiment results verify the feasibility of the proposed design and the heating performance of the designed resonant network.

Heating Behavior and Adhesion Property of Epoxy Adhesive with Nano and Micro Sized Fe3O4 Particles (Nano 및 Micro 크기의 Fe3O4 분말이 첨가된 열경화성 에폭시 접착제의 유도가열 및 접착 특성)

  • Hwang, Ji-Won;Im, Tae-Gyu;Choi, Seung-Yong;Lee, Nam-Kyu;Shon, Min-Young
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.55-60
    • /
    • 2020
  • A study on the heating behavior and adhesion property of structural epoxy adhesive through induction heating have been conducted. An adhesive for induction heating was manufactured through mixing with nano and micro sized Fe3O4. From the results, it was observed that induction heating is less affected by adherend (GFRP) thickness than oven heating. The heating rate of Fe3O4 embedded epoxy adhesive using induction heating much higher than that of oven curing process and it is more appreciable when the contents of Fe3O4 increased. Furthermore, adhesion strength increased with increase of Fe3O4 particle contents.