• Title/Summary/Keyword: Heating process

Search Result 2,034, Processing Time 0.03 seconds

Evaluation of Material Properties in Austenite Stainless Steel Sheet with Scanning Acoustic Microscopy (초음파현미경을 이용한 오스테나이트 스테인레스강의 재료특성 평가)

  • Park, Tae-Sung;Kasuga, Yukio;Park, Ik-Keun;Kim, Kyoung-Suk;Miyasaka, Chiaki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • Austenite stainless steel 304 has properties of high resistance to corrosion and temperature changes. Therefore, this material is widely used in various of industries. However, when the material is subjected to heating and cooling cycles the forming accuracy, for example, the right angle associated with a sharp bend such as corner is lost. This phenomenon is caused by the reversion of the deformation-induced martensite into austenite when the temperature in increased. This result in misfit of a structure or an assembly, and an increase in residual stress. Hence, it is important to understand this process. In this study, to evaluate the mechanical behavior of the deformation-induced martensite and reversed austenite, a scanning acoustic spectroscope including the capability of obtaining both phase and amplitude of the ultrasonic wave (i.e., the complex V(z) curve method) was used. Then, the velocities of the SAW propagating within the specimens made in different conditions were measured. The experimental differences of the SAW velocities obtained in this experiment were ranging from 2,750 m/s to 2,850 m/s, and the theoretical difference was 3.6% under the assumption that the SAW velocity was 2,800 m/s. The error became smaller as the martensite content was increased. Therefore, the SAW velocity may be a probe to estimate the marternsite content.

An Experimental Study on the Energy Separation in the Geometric Setup of a Low Pressure Vortex Tube (저압용 vertex tube의 기하학적형상에 따른 에너지 분리특성에 관한 실험적 연구)

  • 오동진;류정인
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.276-282
    • /
    • 2002
  • The process of energy separation in a low Pressure vortex tube with compressed air as a work-ing medium is studied in detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of the vortex tube and the temperature distribution in a vortex tube provide useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. Analysis of the results enabled to find the optimum length of the vortex tube, the optimum shape of the Throttle and the usefulness of the Sleeve. In this study Outer tube is used for the exhaust application. The hot gas flow is turned 180$^{\circ}$and passes the out-side of the vortex tube a second time heating it. From this geometric setup of a vortex tube He effects of energy separation and the prediction of the ignition of Diesel Soot is presented by experimental data.

A Study on Design Development of Environment-friendly Mobile Home Sauna (친환경 모바일 홈 사우나 디자인 개발에 관한 연구)

  • Lee, Bong Kyu
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.1
    • /
    • pp.77-91
    • /
    • 2015
  • The appeal of sauna is caused by the fact that through that, one can feel Korea's unique temperament and culture; however, because of its being a public facility and flooding of businesses due to excessive supplies of various additional features such as washing, playing, eating, sleeping and health care functions, issues of social resources and environment come to the fore, so it has reached a situation of red ocean that it is difficult to enter the market anymore. Taking these into account, this study focused on developing a thermal technology and design of the housing of an environment-friendly mobile home sauna, making the most use of the sauna's fundamental purpose and settling it as a tourist product, analyzing the marketing research on the existing sauna and considering the recent housing trends and lifestyles for a new concept sauna. Thus, regarding its characteristics and utilization, it was designed smaller than $10m^2$ (3 pyeong) so that it would be easy to install in any space and convenient to move. It can be installed in separate buildings and rest spaces such as country houses, resorts, pensions, camping grounds as well as outdoor houses, custom produced for a measure of pyeong that customers want so as to match up with the Enforcement Ordinance of the Agricultural Land Act in a concept of the farmer's hut and kitchen, bathroom and bathroom can be installed inside according to an option. In addition, regarding its efficacy, in order to give environment-friendly healing effects, materials such as Hinoki Cypress, red clay and hardwood charcoal were used, a fixed indoor temperature of $70{\sim}100^{\circ}C$ was maintained by heating methods such as electromagnetic wave free, energy saving and low-power boiler, and it was made to have excellent effects on fatigue recovery, relieving stress, skin care and diet through far-infrared emission.

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

A Case of Metal Fume Fever Associated with Copper Fume in a Welder (용접공에서 발생한 구리흄에 의한 금속열 1례)

  • Lim, Hyun-Sul;Cheong, Hae-Kwan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.3 s.62
    • /
    • pp.414-423
    • /
    • 1998
  • Metal fume fever has been known as an occupational disease is induced by intense inhalation of fresh metal fume with a particle size smaller than $0.5{\mu}m\;to\;1{\mu}m$. The fumes originate from heating metals beyond their boiling point, as happens, for example, in welding operations. Oxidation usually accompanies this process. In most cases, this syndrome is due to exposure to zinc oxide fumes; however, other metals like copper, magnesium, cadmium, manganese, and antimony are also reported to produce such reactions. Authors report a case of metal fume fever suspected to be associated with copper fume inhalation. The patient was a 42-year-old male and was a smoker. He conducted inert gas tungsten arc welding on copper-coated materials without safety precautions such as a protective mask and adequate ventilation. Immediately after work, he felt metallic taste in his mouth. A few hours after welding, he developed headache, chilling sensation, and chest discomfort. He also complained of myalgia, arthralgia, feverish sensation, thirst, and general weakness. Symptoms worsened after repeated copper welding on the next day and subsided gradually following two weeks. Laboratory examination showed a transient increase of neutrophil count, eosinophilia, elevated erythrocyte sedimentation rate, and positive C-reactive proteinemia. Blood and urine copper level was also increased compared to his wife. Before this episode, he experienced above complaints several times after welding with copper materials but welding of other metals did not produce any symptoms. It was suggested that copper fume would have induced metal fume fever in this case. Further investigations are needed to clarify their pathogenic mechanisms.

  • PDF

A Change of Z-directional Structure in Multi-ply Sheet by Calendering (캘린더 처리에 의한 다층지의 두께방향 구조 특성 변화)

  • Youn, Hye-Jung;Lee, Hak-Lae;Chin, Seong-Min;Jung, Hyun-Do
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.23-32
    • /
    • 2005
  • A change of z-directional structural and surface properties by calendering has a great influence on liquid penetration into a sheet. It could be also important for multi-ply sheet because it contacts liquid dunhg coating or converting process. Therefore, this study was aimed to evaluate of a change of z-directional structure in multi-ply sheet by calendering. To do this, multi-ply sheets were prepared with various raw materials and calendered at the different pressure and temperature conditions. In multi-ply sheet which consisted of one kind of pulp fiber, thickness reductions were higher in top and bottom plies than in middle plies. And in the case of soft nip calender treatment with high temperature, top layer which was in contact with heating roll showed the highest reduction of thickness. Hard nip calender treatment showed U-shaped density profile in z-direction, but compression profile by SNC treatment was dependent on calendering condition. To examine z-directional structure of multi-ply sheet which was composed of different raw material for each layer, CLSM (Confocal Laser Scanning Microscopy) analyses were carried out on cross direction of sheet. It turned out to be a useful tool for investigating z-directional analysis. As a result, variation of thickness reduction in z-direction is dependent on ply structure, compressibility of pulp fiber, and calendering condition.

Analysis on Ground Temperature Arrangement Function of Jinan Macho Village Grove (진안 하초 마을숲의 온도 조절 기능 분석)

  • Park, Jae-Chul;Jung, Gyung-Suk;Jang, Hei-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.4 s.21
    • /
    • pp.35-41
    • /
    • 2003
  • The purpose of this study is on identifying the function of ground temperature arrangement of village grove. Case study was accomplished at Hacho village grove in Jinan-gun, Jeonbuk province. Hacho village grove was the largest grove of all and most formal grove in Jinan region. So ground temperature of outside and inside of Hacho village grove were measured from March to October in 2001. And comparative review about difference between outside and inside of village grove was accomplished. Our ancestors, in spite of orient and occident, have made a settlement in consideration of climatic conditions. We have to team from past pattern and add modern scientific technology. So traditional wisdom and wise planning process must be considered in order to create qualitative residential environment in present through natural elements. It is identified that in winter, the inner side ground temperature is higher than outside one of that and in summer, in contrary, the inner side one of that is lower than outside one of that. So it is identified that Macho village grove breaks winds and reduce the heating energy in winter, it reduces ground temperature and reduces cooling energy very well in summer. It is identified that village grove reduce ground temperature in summer better than any other season. It is identified that in summer, the effect of maintaining constant temperature is also better than my other season. So it is identified that village grove stabilize most changeable outside temperature in inside of that.

Study on Residual Stress Distribution in Thick Plate Welded Material Using Indentation Equipment (압입시험기를 이용한 후판용접재의 잔류응력 분포에 관한 연구)

  • Huh, Sun-Chul;Kim, Gwi-Nam;Lee, Jong-Seok;Park, Cheol-Hong;Park, Joun-Sung;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.66-71
    • /
    • 2011
  • Recently, the production of shipbuilding and offshore plant industries, with a trend toward large structures, has led to an increased use of high strength ultra-thick plates. The use of ultra-thick plates increases the welding tasks, and the welding process generates distortion and residual stress in the weldment because of the rapid heating and cooling. Welding distortion and residual stress in the welded structure resulte in many troubles such as deformation and life deterioration. In particular, the welding residual stress has an important effect on welding deformation, fatigue, buckling strength, brittleness, etc. The purpose of this study was to evaluate the residual stress at a multi-pass weldment using an experimental method for EH36 high-tension steel. In this experimental method, AIS3000 was used to measure the residual stress of a welded part, HAZ, and base metal; EPMA and XRD were used to study the material properties.

Influence of ZnO Thickness on the Optical and Electrical Properties of GZO/ZnO Bi-layered Films

  • Kim, Sun-Kyung;Kim, So-Young;Kim, Seung-Hong;Jeon, Jae-Hyun;Gong, Tae-Kyung;Kim, Daeil;Yoon, Dae Young;Choi, Dong Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.198-200
    • /
    • 2014
  • 100 nm thick Ga doped ZnO (GZO) thin films were deposited with RF magnetron sputtering on polyethylene terephthalate (PET) and ZnO coated PET substrate and then the effect of the ZnO thickness on the optical and electrical properties of the GZO films was investigated. GZO single layer films had an optical transmittance of 83.7% in the visible wavelength region and a sheet resistance of $2.41{\Omega}/{\square}$, while the optical and electrical properties of the GZO/ZnO bi-layered films were influenced by the thickness of the ZnO buffer layer. GZO films with a 20 nm thick ZnO buffer layer showed a lower sheet resistance of $1.45{\Omega}/{\square}$ and an optical transmittance of 85.9%. As the thickness of ZnO buffer layer in GZO/ZnO bi-layered films increased, both the conductivity and optical transmittance in the visible wavelength region were increased. Based on the figure of merit (FOM), it can be concluded that the ZnO buffer layer effectively increases the optical and electrical performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.

The Effect of Sintering on the Thermoelectric Properties of Bulk Nanostructured Bismuth Telluride (Bi2Te3) (나노구조를 기반으로 하는 Bi2Te3 소결과 그 시간에 따른 열전 특성)

  • Yu, Susanna;Kang, Min-Seok;Kim, Do-Kyung;Moon, Kyung-Sook;Toprak, M.S.;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.561-565
    • /
    • 2014
  • Thermoelectric materials have been the topic of intensive research due to their unique dual capability of directly converting heat into electricity or electrical power into cooling or heating. Bismuth telluride ($Bi_2Te_3$) is the best-known commercially used thermoelectric material in the bulk form for cooling and power generation applications In this work we focus on the large scale synthesis of nanostructured undoped bulk nanostructured $Bi_2Te_3$ materials by employing a novel bottom-up solution-based chemical approach. Spark plasma sintering has been employed for compaction and sintering of $Bi_2Te_3$ nanopowders, resulting in relative density of $g{\cdot}cm^{-3}$ while preserving the nanostructure. The average grain size of the final compacts was obtained as 200 nm after sintering. An improved NS bulk undoped $Bi_2Te_3$ is achieved with sintered at $400^{\circ}C$ for 4 min holding time.