• Title/Summary/Keyword: Heating for Greenhouse

Search Result 332, Processing Time 0.027 seconds

A Study on the Efficient Utilization of Aquaculture Greenhouse by Paralleling Vegetable Nutrient Culture Systems (채소 수경재배체계 도입에 의한 양어시설의 효율적 이용에 관한 연구)

  • 이병일;이지원;김기덕;이순길;정선부
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.123-134
    • /
    • 1992
  • In order to verify the usability of the greenhouse for aquaculture with nutrient culture synchronously and to obtain the fundamental data fir the establishment of efficient farming technology, the characteristics of microclimate and the growth of leafy vegetables were examined. Tilapia averaged 428.6 g grew to 784 g(1.83 times) for 147 days from May 29 to Oct. 21 and fingerlings averaged 12.9 g grew by 1.37 times for 61 days from Sep. 13 to Nov. 12. The growth of vegetables such as water dropwort, leaf lettuce, Chinese cabbage, and Welsh onion in the greenhouse was better for aquaculture with nutrient culture than for nutrient culture only. Between above two greenhouses, pH and EC of nutrient solution was same but the temperature different by about 2$^{\circ}C$. Average day temperature, relative humidity, and $CO_2$ concentration were higher by 2.9$^{\circ}C$, 6%, and 200 ppm in the greenhouse for aquaculture with nutrient culture, respectively. Net assimilation rate of vegetables in the greenhouse was a little higher for aquaculture with nutrient culture than for nutrient culture only. Therefore, provided aquaculture and nutrient culture are carried out in the same greenhouse, the saving effect of heating cost as well as the additional promotive effects of vegetable and tilapia growth can be obtained.

  • PDF

Oxy-combustion Characteristics of Coal and Waste Fuels with the Concentrations of Oxygen and Carbon Dioxide (산소/이산화탄소 농도 변화에 따른 석탄과 폐기물 연료의 순산소 연소 특성)

  • Kang, Sin-Wook;Park, Jeong Min;Lee, Sang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.473-479
    • /
    • 2017
  • This study was designed to understand characteristics of oxy-combustion of coal, dried sewage sludge and solid refuse fuel (SRF). Thermogravimetric analysis was conducted by burning the fuels with air, 21% oxygen ($O_2$)/79% carbon dioxide ($CO_2$) and 30% $O_2/70%$ $CO_2$. Heating rates were varied as 5, 10, 25, 40 and $100^{\circ}C/min$. Complete coal combustion was found at the heating rates of 5, 10, 25 and $40^{\circ}C/min$, and different combustion behavior was found with the gas composition at the heating rates of 10, 25, 40 and $100^{\circ}C/min$. Coal combustion with 30% $O_2/70%$ $CO_2$ showed the highest while coal combustion with 21% $O_2/79%$ $CO_2$ showed the lowest combustion rate. On the other hand, the combustion of dried sewage sludge and SRF showed similar combustion behavior with respect to the combustion gas composition. This suggests that oxy-combustion of dried sewage sludge and SRF which contain a large amount of volatile matter may show similar combustion behavior to their air combustion.

Assessing the Economic and $CO_2$ Emission Reductions Viability of Domestic Ground-Source Heat Pumps (단독주택용 지열 열펌프 시스템의 경제성과 이산화탄소 배출 저감 가능성 평가)

  • Sohn, Byong-Hu;Kang, Shin-Hyung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.64-69
    • /
    • 2009
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these advantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conventional HVAC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total greenhouse gas emissions than the alternative HVAC systems considered in this work.

  • PDF

Assessment of the Effect of Dimethyl Ether (DME) Combustion on Lettuce and Chinese Cabbage Growth in Greenhouse (온실에서 상추와 배추를 이용한 DME 원료 난방 효율분석)

  • Basak, Jayanta Kumar;Qasim, Waqas;Khan, Fawad;Okyere, Frank Gyan;Lee, Yongjin;Arulmozhi, Elanchezhian;Park, Jihoon;Cho, Wonjun;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.293-301
    • /
    • 2019
  • The experiment was conducted to determine the performance of DME combustion gas when used as a fuel for DME burner for raising temperature and $CO_2$ concentration in greenhouse and also to examine its effects on chlorophyll content, and fresh and dry weight of lettuce and Chinese cabbage. DME-1 and DME-2 treatments consisted of average DME flow quantity in duct were $17.4m^3min^{-1}$ and $10.2m^3min^{-1}$ respectively to greenhouse-1 and greenhouse-2 and no DME gas was supplied to greenhouse-3 which was left as control (DME-3). DME supply times were $0.5hr\;day^{-1}$, $1hr\;day^{-1}$, $1:30hrs\;day^{-1}$ and $2hrs\;day^{-1}$ on week 1, 2, 3, and 4 respectively. Chlorophyll content and fresh and dry weight of lettuce and Chinese cabbage were measured for each treatment and analyzed through analysis of variance with a significance level of P<0.05. The result of the study showed that $CO_2$ concentration increased up to 265% and 174% and the level of temperature elevated $4.8^{\circ}C$ and $3.1^{\circ}C$ in greenhouse-1 and 2, respectively as compared to greenhouse-3 due to application of DME combustion gas. Although, the same crop management practices were provided in greenhouse-1, 2 and 3 at a same rate, the highest change (p<0.05) of chlorophyll content, fresh weight and dry weight were found from the DME-1 treatment, followed by DME-2. As a result, DME combustion gas that raised the level of temperature and $CO_2$ concentration in the greenhouse-1 and greenhouse-2, might have an effect on growth of lettuce and Chinese cabbage. At end of experiment, the highest fresh and dry weight of lettuce and Chinese cabbage were measured in greenhouse-1 and followed by greenhouse-2. Similarly chlorophyll content of greenhouse-1 and greenhouse-2 were more compared to greenhouse-3. In general, DME was not producing any harmful gas during its combustion period, therefore it can be used as an alternative to conventional fuel such as diesel and liquefied petroleum gas (LPG) for both heating and $CO_2$ supply in winter season. Moreover, endorsed quantify of DME combustion gas for a specified crop can be applied to greenhouse to improve the plant growth and enhance yield.

Comparision of Heat Exchanging Performance Depending on Different Arrangement of Heat Exchanging Pipe (II) (열회수장치의 열교환 파이프배치형식별 열교환 성능 비교(II))

  • Suh, Won-Myung;Kang, Jong-Guk;Yoon, Yong-Cheol;Kim, Jung-Sub
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared for the comparison of heat recovery performance; AB-type(control unit) is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types(C-type and D-type) modified from the control unit are different in the aspects of airflow direction(U-turn airflow) and pipe arrangement. The results are summarized as follows; 1. In the case of Type-AB, when considering the initial cost and current electricity fee required for system operation, it is expected that one or two years at most would be enough to return the whole cost invested. 2. Type-C and Type-D, basically different with Type-AB in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than $25\;m^{3}/min$. Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This is assumed to be that air flow resistance in high air capacity reduces the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate in Type-C and Type-D were improved by about 5% and 13%, respectively. 3. Desirable blower capacity for these heat recovery units experimented are expected to be about $25\;m^{3}/min$, and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it is recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., are required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

  • PDF

A Study on the Utilization of potential heat sources for Heat Pumps to District Heating System in Urban (도시 내 지역난방 Heat Pump용 잠재열원 이용에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.841-855
    • /
    • 2018
  • The purpose of this study is to estimate the available potential heat source for heat pump in the district heating supply area in the city. Unused energy potentials were estimated and integrated based on open source based data. In particular, geographical spatial analysis of recoverable heat energy density and heat demand in the heat source area of large retailers and public sauna facilities in the DH network located in the southern part of the metropolitan area (Pyeongtaek-si) was conducted. As a result of the study, the DH network area had a total potential energy of 1,741.7 toe/year for the two heat sources of large retailers and public saunas. It is estimated that 1,006.9 toe/year, which is 57.8% of the total, can be linked to the district heating. The large retailers showed a positive correlation with the floor area and energy use of 0.4937. The recoverable energy intensity was estimated to be $0.0017toe/m^2$ per unit area and $0.0069tCO_2/m^2$ for greenhouse gas emissions. In addition, public saunas were analyzed by comparing the empirical case with the theoretical calculation, and it was estimated that energy conservation estimate of 80% was $0.0315toe/m^2$ per bath area and $0.1183tCO_2/m^2$ for greenhouse gas emissions. The total potential energy amount of this area was positively correlated with the heat demand of apartment house by administrative district, and it was confirmed that it had a relatively high potential energy especially in traffic and commercial center.

A Study on Analysis of Reserves and Available Capacity of Unutilized Energy in Rural Community (농어촌지역 미활용에너지의 부존량과 이용 가능량 분석)

  • Park, Mi-Lan;Ryoo, Yeon-Su;Kim, Jin-Wook;Lee, Yong-Uk;Bae, Sung-Don;Chae, Kap-Byung
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.19-25
    • /
    • 2014
  • Alternative sources of energy take a higher interest in order to reduce the greenhouse gas under the Climate Change Convention, fossil fuel consumption, and lower social anxiety about nuclear power such as crisis involving the Fukushima plant, problem of obsolete equipment. The energy consumption of agriculture, forestry and fisheries in South Korea is 3,082,000toe by 2011, reliance on electrical energy(35%) and oil(57.2%) is very high with 92.2%. In this study, we examined reserves and available capacity of temperature difference energy for thermal discharge from plant, treated sewage, river water, dam, and agricultural reservoir in rural community. Reserves of unutilized energy are 455,735Tcal/yr in rural community, these accounts for 78% of total reserves 582,385Tcal/y. Thermal discharge from plant has the most reserves of unutilized energy in rural community, it is estimated that it has the reserves of 277,410Tcal/y. Available capacity of unutilized energy in rural community is total 134,147Tcal/y, thermal discharge from plant available for heating is the most 128,035Tcal/y, and it shows in the order of treated sewage 4,318Tcal/y, river water 1,653Tcal/y, and reservoir 141Tcal/y. Elevating temperature area of green house by 2012 is 21,208ha. The amount of energy required for heating the greenhouse a year is dbout 11,365Tcal/y with 8.5% of the total available capacity of unutilized energy.

Analysis of Heat Emission from Hot Water Pipe for Greenhouse Heating System Design (온실 난방시스템 설계를 위한 온수난방배관의 방열량 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to $16.3^{\circ}C$ and $14.6^{\circ}C$ during the experiment, respectively. The average water temperature in heating pipes was $52.3^{\circ}C$ and $45.0^{\circ}C$, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of $5.71{\sim}7.49W/m^2^{\circ}C$. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.

An Experimental Study on the Heat Storage Properties of Phase Change Material Using Paraffin Sheets in Building (파라핀을 이용한 건축용 시트형 잠열축열재의 축열특성에 관한 실험적 연구)

  • Ko, Jin-Soo;Kim, Byung-Yun;Park, Sung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.435-441
    • /
    • 2011
  • The life cycle assessment on greenhouse gas emission of reinforced concrete buildings shows that more than 70 percent of greenhouse gas that is discharged by a building is discharged in the building maintenance stage, including cooling and heating. To reduce the greenhouse gas emission, maintenance planning to minimize the energy consumption is necessary in the design stage. In this paper, two heat storage rooms are tested to save the air cooling energy of the buildings. The specimens are essentially identical, except that chamber A contained paraffin sheets as the finishing material, while the other, chamber B, served as a control. The test results show that chamber A with the paraffin sheets exhibited less temperature change than chamber B without the sheets when temperature was increased outside of the specimens. The heating energy was probably consumed in the phase change of the paraffin sheets, which can be useful for reducing energy consumption related to air cooling during the summer.

Investigations and Analyses of Duck Breeding Facilities in Jeollanam-do Province, Korea (전남지역 오리 사육시설 실태 조사 및 분석)

  • Kwon, Kyeong-seok;Yang, Kayoung;Kim, Jong-bok;Kim, Jung-kon;Jang, Donghwa;Choi, Sungmin;Lee, Sang-yeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Number of duck and its breeding facilities have been steadily decreasing for financial and social issues in Korea. Therefore, the 'turning point' for duck industry is strongly demanded. In this study, the questionary survey was carried out to provide backgrounds for developing policy and technology for duck breeding farms. The questionary survey aimed to investigate the information of operation strategy of farm, ventilation, cooling and heating. The total number of survey respondents was 74. In case of facility type, 55.4% of respondents stated they used greenhouse type, 31.3% for winch-curtain type, and 2.7% for windowless type (mechanically ventilated facility). More than 85% of the facilities were using 'natural ventilation', it meant that these situation can restrict the not only environmental control but also the supply policy for 'smart farm' of the Government. 44.6% used the combination of the cross-ventilation method and roof-ventilation method for ventilation operation in summer season, and 31.1% followed only the cross-ventilation method. In case of winter season, 36.5% used the cross-ventilation method, and 33.3% used the combination of cross and roof-ventilation, method. For the ventilation strategy, about 86.5% depended on farmer's experience. In case of heating and cooling, 79.7% were using kerosene heater for winter season, and 43.2% were using mist-spray for summer season, respectively. More than 75% stated that cooling and heating strategies were based on farmer's experience. From the analyses of the survey results, a few proposals for developing policy and technology for duck breeding farm was suggested.