• Title/Summary/Keyword: Heating for Greenhouse

Search Result 331, Processing Time 0.033 seconds

Peak Cooling and Heating Load and Energy Simulation Study for a Special Greenhouse Facility (유리 온실 시설의 연간 냉난방 부하 및 에너지 시뮬레이션에 관한 연구)

  • Jang, Jea-Chul;Kang, Eun-Chul;Lee, Euy-Joon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.72-76
    • /
    • 2009
  • A peak cooling and heating load($kW/m^2$) and annual energy($kWh/m^2{\cdot}yr$) have been simulated for a special greenhouse located near Seoul. The special facility was designed for living plant and butterfly with many visitors. The design conditions for the facility have been discussed with the designer and simulated with the weather and building conditions. The load and energy simulation was done by TRNSYS 15 based on IPMVP 4.4.2.'s simulation requirement. The results have been shown in terms of area($kW/m^2$) and volume load and energy index($kWh/m^2{\cdot}yr$). Considering the higher height of the facility, The results came out reasonably comparing the index of a typical commercial building signed as $462kWh/m^2{\cdot}yr$.

  • PDF

Experimental Study on the Characteristics of Ground Heat Exchange in Heating Greenhouses (난방 온실의 지중열 교환 특성에 관한 실험적 연구)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.218-223
    • /
    • 2016
  • The calculation method of ground heat exchange in greenhouses has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the soil temperature distribution and the soil heat flux in three plastic greenhouses of different size and location during the heating period. And then the calculation methods of ground heat exchange in greenhouses were reviewed. The soil temperature distributions measured in the heating greenhouse were compared with the indoor air temperature, the results showed that soil temperatures were higher than room temperature in the central part of greenhouse, and soil temperatures were lower than room temperature in the side edge of greenhouse. Therefore, it is determined that the ground heat gain in the central part of greenhouse and the perimeter heat loss in the side edge of greenhouse are occurred, there is a difference depending on the size of greenhouse. Introducing the concept of heat loss through the perimeter of building and modified to reflect the size of greenhouse, the calculation method of ground heat exchange in greenhouses is considered appropriate. It was confirmed that the floor heat loss measured by using soil heat flux sensors increased linearly in proportion to the temperature difference between indoor and outdoor. We derived the reference temperature difference which change the direction of ground heat flow and the perimeter heat loss factor from the measured heat flux results. In the heating design of domestic greenhouses, reference temperature differences are proposed to apply $12.5{\sim}15^{\circ}C$ in small greenhouses and around $10^{\circ}C$ in large greenhouses. Perimeter heat loss factors are proposed to apply $2.5{\sim}5.0W{\cdot}m^{-1}{\cdot}K^{-1}$ in small greenhouses and $7.5{\sim}10W{\cdot}m^{-1}{\cdot}K^{-1}$ in large greenhouses as design standard data.

Analysis of Heat Transfer Characteristics in Response to Water Flow Rate and Temperature in Greenhouses with Water Curtain System (수막하우스의 유량 및 수온에 따른 열전달 특성 분석)

  • Kim, Hyung-Kweon;Kim, Seoung-Hee;Kwon, Jin-Kyeong
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • This study analysed overall heat transfer coefficient, heat transmission, and rate of indoor air heating provided by water curtain in order to determine the heat transfer characteristic of double-layered greenhouse equipped with a water curtain system. The air temperatures between the inner and outer layers were determined by the water flow rate and inlet water temperature. Higher water flow rate and inlet water temperature resulted in the increased overall heat transfer coefficient between indoor greenhouse air and water curtain. However, it was found that with higher levels of water flow rate and inlet water temperature, indoor overall heat transfer coefficient was converged about $10W{\cdot}m^{-2}{\cdot}^oC^{-1}$. The low correlation of overall heat transfer coefficient between water curtain and air within double layers was likely because the combination of greenhouse shape, wind speed and outdoor air temperature as well as water curtain affected the heat transfer characteristics. As water flow rate and inlet water temperature increased, the heat transferred into the greenhouse by water curtain also tend to rise. However it was demonstrated that the rate of heat transmission from water curtain into greenhouse with water curtain system using underground water was accounted for 22% to 28% for total heat lost by water curtain. The results of this study which quantify heat transfer coefficient and net heat transfer from water curtain may be a good reference for economical design of water curtain system.

Automatic Control System of Vertical Agitation Heater for Controlling Temperature of Greenhouse (시설하우스 온도 조절을 위한 수직형 교반 히터 자동제어 시스템)

  • Kwak, Yun-Ah;Park, Kyoung-Wook;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.623-628
    • /
    • 2015
  • As the current heating control of the greenhouse is located in specifically designed place, there is an inevitable difference in degrees depending on the latitude in it. Even though it is necessary to maintain the proper temperature in the greenhouse producing vegetables and fruit plants, the difference between ups and downs in the facilities results in the increasing energy consumption to both warm and cool down the facilities. The newest heating method, automatic control system of vertical agitation heater, which manipulates the inner air circulation efficiently, is suggested in this paper. The proposed system utilizes both the upper temperature and the lower temperature, and controls the air circulation fan and heating independently, so that maximizes the efficiency of heating with the minimum energy and implements predictable planning of farm products.

Comparative Analysis of Weather Data for Heating and Cooling Load Calculation in Greenhouse Environmental Design (온실의 냉난방부하 산정을 위한 외부기상자료 비교분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.174-180
    • /
    • 2014
  • Standard weather data available to greenhouse environmental design are limited in most regions of the country. So, instead of using standard weather data, in order to find the method to build design weather data for greenhouse heating and cooling, design outdoor weather conditions were analyzed and compared by TAC method and frequency analysis using climatological normal and thirty years from 1981 to 2010 hourly weather data provided by KMA and standard weather data provided by KSES. Average TAC values of outdoor temperature, relative humidity and insolation using thirty years hourly weather data showed a good agreement with them using standard weather data. Therefore, in regions which are not available standard weather data, we suggest that design outdoor weather conditions should be analyzed using thirty years hourly weather data. Average of TAC values derived from every year hourly weather data during the whole period can be established as environmental design standards, and also minimum and maximum of them can be used as reference data.

Empirical evaluation of the heating performance by a heat pump system with surplus heat from a greenhouse (온실 태양잉여열을 이용한 히트펌프시스템의 난방 성능평가에 관한 실증 연구)

  • Jeon, Byung-Yong;Park, Youn-Cheol;Ko, Gwang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.99-104
    • /
    • 2017
  • This study evaluated the heating performance of a hybrid heat pump system. The system was installed in a $100-m^2$ greenhouse to utilize surplus solar energy. A hybrid heat pump system was installed at Jocheon-ri, Jeju Island, for an empirical evaluation of the performance. The system consists of a heat storage tank and plate heat exchangers for several heat exchanges between the greenhouse and heat pump or storage tank. The system uses R410a as the working fluid and is controlled automatically by a defined set temperature of the greenhouse. This system incorporates two kinds of heat sources: outdoor air and a storage tank that collects heat from the topside of the greenhouse. The results showed that the heating capacity was 19.9 kW in the outdoor air source mode and 21.4 kW with direct heating from hot water in the thermal storage tank. These results are very similar to those of a previous study.