• 제목/요약/키워드: Heating film

검색결과 507건 처리시간 0.029초

Lamp ZMR에 의한 SOI에서 비대칭 선형가열의 효과 (Effect of Asymmetric Line Heating in SOI Lamp ZMR)

  • 반효동;이시우;임인곤;주승기
    • 한국결정성장학회지
    • /
    • 제2권2호
    • /
    • pp.53-62
    • /
    • 1992
  • SOI구조 형성을 위항 대용융 재결정(ZMR) 공정에서 타원형의 반사경을 기울여 빔강도분포를 인위적으로 변화시켜 실리콘 박막을 재결정시켰다. 비대칭 선형가열 효과를 해석하기 위하여 전산모사를 행하여 응고계면 근처에서의 온도분포와 열구배 변화를 조사하였다. 상부집속열원의 경사각이 증가할수록 액상의 과냉도와 실리콘 박막내의 결함열 간격은 증가하였다. 주된 결함은 연속적인 아결정립계였고 결함밀도가 낮은 경우는 isolated threading dislocations만이 관찰되었다. 단면 TEM과 박막 XRD 분석결과 실리콘 박막은 (100) 집합조직을 갖는 단결정 박막으로 재결정되었음을 확인할 수 있었다.

  • PDF

MWCNT가 첨가된 SPB/PVDF Composite Electrode의 물리적 및 전기적 특성 (Mechanical and Electrical properties of MWCNT-added SPB/PVDF composite electrode)

  • 정영동;김동훈;신혜민;하경화;도칠훈;진봉수;김현수;문성인;김기원;오대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.512-513
    • /
    • 2007
  • Carbon/polymer based composite electrodes were fabricated by using Super p. Black(SPB) as a conductor and polyvinylidene fluoride (PVDF) as a binder. This type of composite electrode are considered as excellent candidates for heating film and variable resistor applications. Aim of this work is the study of the Mechanical and Electrical properties on composite electrode by the contents of SPB and MWCNT, respectively. The composite electrode having 10~15 wt% of SPB show good electrical and mechanical properties. Mechanical and electrical properties are increased by the addition of MWCNT into the composite electrode.

  • PDF

화물 컨테이너용 액상 백 내부 PCM의 용융 과정에 대한 열유동 특성 해석 (Heat and Flow Characteristics During Melting Process of a PCM Inside a Liquid Flexitank for Cargo Containers)

  • 쑨리롱;김준현;나재훈;성재용
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.6-17
    • /
    • 2024
  • This study examined the natural convection heat flow characteristics of the melting process of PCM (palm oil) inside a liquid flexitank(bag) for a cargo container. A film heating element was installed on the bottom of the container, and numerical analysis was performed under heat flux conditions of 1,000 to 4,000 W/m2. As a result, the melt interface of the PCM rises to a nearly horizontal state over time. In the initial stage, conduction heat transfer dominates, but gradually waves at the cell flow and melt interfaces are formed due to natural convection heat transfer. As melting progresses, the Ra number increases parabolically, and the Nu number increases linearly and has a constant value. The Nu number rises slowly under low heat flux conditions, whereas under high heat flux conditions, the Nu number rises rapidly. As the heat flux increases, the internal temperature oscillation of the liquid phase after melting increases. However, under high heat flux conditions, excess heat exceeding the latent heat is generated, and the temperature of the molten liquid is raised, so the increase in melting rate decreases. Therefore, the appropriate heating element specification applied to a 20-ton palm oil container is 2,000 W/m2.

Effusion Cell 방식에 의한 <111> 결정구조의 Au 박막의 제작 (Au Thin Film Fabrication of <111> Crystal Structure by Effusion Cell Process)

  • 표경수;김강대;김용규;송정근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.383-386
    • /
    • 2004
  • The one of important requisites for fabricating molecular electronic device is the single crystal direction of bottom substrate nowadays. [1,2]. We obtain the optimum SAM result when the Au crystal is <111> structure for Self-Assembled molecular. To get the <111> crystal Au, we generally repeat heating and cooling course after evaporating Au [3]. However, we can fabricate <111> crystal Av thin film except post treatment because we simultaneously evaporate and anneal using Effusion Cell. In this paper, we study on thin film growth of <111> crystal Au as bottom electrode which is essential for Self-Assembled molecular by Effusion Cell and analyze crystal structure, thickness, surface conductivity and so on as each process condition.

  • PDF

Excimer laser crystallization of sputtered a-Si films on plastic substrates

  • Cho, Hans-S;Jung, Ji-Sim;Kim, Do-Young;Park, Young-Soo;Park, Kyung-Bae;Kwon, Jang-Yeon;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.962-965
    • /
    • 2004
  • In this work, thin films of amorphous silicon (a-Si) were formed on plastic substrates by sputtering deposition and crystallized using excimer laser irradiation. As the entire process is conducted at room temperature, and the laser irradiation-induced heating is confined to the thin film, the plastic substrate is not subjected to thermal stresses. The microstructure resulting from the laser irradiation was dependent on the laser irradiation energy density and the composition of the underlying buffer layers. It was found that a layer of AlN deposited as a buffer between the plastic and the a-Si film increased the endurance of the a-Si film under laser irradiation, and resulted in polycrystalline Si grains up to 100nm in diameter.

  • PDF

단층 탄소나노튜브의 일산화질소 가스에 대한 감응특성과 열처리 효과 (NO Gas Sensing Characteristics of Single-Walled Carbon Nanotubes and Heating Effect)

  • 김민주;윤광현;허증수
    • 센서학회지
    • /
    • 제13권4호
    • /
    • pp.292-297
    • /
    • 2004
  • Carbon nanotubes (CNT) were synthesized by arc-discharge method. To fabricate CNT sensor, CNT powder was dispersed in ${\alpha}$-Terpinol($C_{10}H_{17}OH$) solution. The CNT tilms were fabricated by screen printing method on the interdigitated Pt/Pd alloy electrode. The microstructure of CNT film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In order to investigate the gas sensing characteristics of the film, the CNT film was experimented to measure NO response and recovery time. The CNT sensor with a heater was compared to that without a heater. And this sensor shows better reproductibility and faster recovery time than another CNT sensors. We suggest the possibility to utilize a CNT as new sensing materials for environmental monitoring.

태양전지용 CdS 박막의 열처리에 따른 전기 및 광학적 특성에 관한 연구 (A Study on the Electrical and Optical Properties of CdS Thin Film by Annealing for Solar Cell)

  • 박정철;추순남
    • 한국전기전자재료학회논문지
    • /
    • 제22권11호
    • /
    • pp.999-1003
    • /
    • 2009
  • In this paper, CdS thin films well-known to window layer for solar cell were fabricated by means of vacuum evaporation method treated with different substrate heating. During film fabrication the substrates were heated at 50, 75 and $100^{\circ}C$, respectively. The thin films were then annealed at $200^{\circ}C$ in atmosphere, and the electrical and optical properties were investigated. By annealing, the hexagonal structure of films was changed into cubic structure. Their transmissivity was also increased and moved to longer wave band. It was shown that the film fabricated with the substrate heat-treated at $50^{\circ}C$ had the lowest resistivity.

Uniform Grafting of Poly(1,5-dioxepan-2-one) by Surface-Initiated, Ring-Opening Polymerization

  • Yoon Kuk-Ro;Yoon Ok-Ja;Chi Young-Shik;Choi Insung-S.
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.205-208
    • /
    • 2006
  • A polymeric film of a biodegradable poly(1,5-dioxepan-2-one) (PDXO) was formed on a gold surface by a combination of the formation of self-assembled monolayers (SAMs) presenting hydroxyl groups and the surface-initiated, ring-opening polymerization (SI-ROP) of 1,5-dioxepan-2-one (DXO). The SI-ROP of DXO was achieved by heating a mixture of $Sn(Oct)_2$, DXO, and the SAM-coated substrate in anhydrous toluene at $55^{\circ}C$. The resulting PDXO film was quite uniform. The PDXO film was characterized by polarized infrared external reflectance spectroscopy, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, atomic force microscopy, ellipsometry, and contact angle goniometry.

보급형 He-Ne 타원해석기의 제작과 $TiO_2$ 박막 유효밀도 변화의 in-situ 측정 (Fabrication of He-Ne ellipsometer and in-situ measurement of effective density variation of $TiO_2$thin films)

  • 김상준;방현용;김상열
    • 한국진공학회지
    • /
    • 제8권4A호
    • /
    • pp.432-437
    • /
    • 1999
  • We have fabricated an in situ ellipsometer operating at He-Ne wavelength. It can be applied to the real-time, in-situ tracking of the ellisometric change which occurs during various sample treatments. As a rotating analyzer type, all optical elements and related parts are designed to share a common hollow-axis configuration, and hence the ellipsometer is compact in shape and simple in design. It is mountable on the spare ports of vacuum chamber with ease. Using this ellipsometer, we observed the effective density variation of previously grown $TiO_2$ thin films by using electron beam evaporation. The packing density of the as-grown film was 82%. When exposed to atomsphere, the micro-void of the film was filled with water vapor. This water-filled $TiO_2$ thin film was subject to heating/cooling cycles in vacuum and the ellipsometric variation versus temperature and cycling number was measured in real time using this in situ He-Ne ellipsometer.

  • PDF

RF 마그네트론 스퍼터링을 이용한 Si 기판상의 AlN 박막의 제조 (Preparation of AlN thin films on silicon by reactive RF magnetron sputtering)

  • 조찬섭;김형표
    • 반도체디스플레이기술학회지
    • /
    • 제3권2호
    • /
    • pp.17-21
    • /
    • 2004
  • Aluminum nitride(AlN) thin films were deposited on silicon substrate by reactive RF magnetron sputtering without substrate heating. We investigated the dependence of some properties for AlN thin film on sputtering conditions such as working pressure, $N_2$ concentration and RF power. XRD, Ellipsometer and AES has been measured to find out structural properties and preferred orientation of AlN thin films. Deposition rate of AlN thin film was increased with an increase of RF power and decreased with an increase of $N_2$ concentration. AES in-depth measurements showed that stoichiometry of Aluminium and Nitrogen elements were not affected by $N_2$ concentration. It has shown that low working pressure, low $N_2$ concentration and high RF power should be maintained to deposit AlN thin film with a high degree of (0002) preferred orientation.

  • PDF