• Title/Summary/Keyword: Heating effect

Search Result 2,292, Processing Time 0.039 seconds

Heating Effect of Greenhouse Cultivated Mangos by Heat Pump System using Underground Air as Heat Source (지하공기 이용 히트펌프시스템의 망고온실 난방효과)

  • Kang, Younkoo;Kim, Younghwa;Ryou, Youngsun;Kim, Jongkoo;Jang, Jaekyoung;Lee, Hyoungmo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.200.1-200.1
    • /
    • 2011
  • Underground air is a special energy source in Jeju and distributes lava cave, pyroclastic, open joint, and crushing zone. A possible area to utilize underground air is 85% of Jeju except to the nearby area of Sambang Mt. and 25m high coastal area from sea level. In Jeju, underground air is used for heating agricultural facilities such as greenhouse cultivated mangos, Hallbong and mandarin orange, pigsty, mushroom cultivation house, etc. and fertilizing natural $CO_2$ gas by suppling directly into agricultural facilities. But this heating method causes several problem because the underground air has over 90% relative humidity and is inadequate in heating for crops. Mangos are the most widely grown tropical fruit trees and have been cultivated since 1993 in Jeju. In Jeju, the cultivating area is about 20ha and amount of harvest is 275ton/year in 2010. In this study, the heat pump system using underground air as heat source was installed in mangos greenhouse which area is $495m^2$. The capacity of heat pump system and heat storage tank was 10RT, 5ton respectively and heating effect and heating performance of the system were analysed.

  • PDF

Selective Crystallization of SAPO-5 and SAPO-34 Molecular Sieves in Alkaline Condition: Effect of Heating Method

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Kim, Young-Ho;Park, Sang-Eon;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.558-562
    • /
    • 2005
  • Crystallization of SAPO-5 and SAPO-34 molecular sieves with microwave and conventional electric heating of the same gel has been investigated in an alkaline condition using N,N,N’N’tetraethylethylenediamine as a template molecule. SAPO-5 structure can be selectively prepared with microwave heating because of the fast crystallization of the technique. On the other hand, SAPO-34 is the sole product with usual conventional electric heating because SAPO-5 can be gradually transformed into SAPO-34 structure with an increase in crystallization time. This phase selectivity is probably because of the relative stability of the two phases at the reaction conditions (kinetic effect). Crystallization with microwave heating can be suggested as a phase selective synthesis method for relatively unstable materials because of fast crystallization.

Characteristics of Electric Resistance Heated Surface Friction Spot Welding Process of Copper and Aluminum Dissimilar Metal Sheets (구리와 알루미늄 이종금속 판재간의 전기저항가열 표면마찰 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.99-109
    • /
    • 2022
  • In this study, an electric resistance-heated surface friction spot-welding process was proposed and tested for the spot-welding ability of copper and aluminum dissimilar metal sheets using electric resistance heating and surface friction heating. This process has welding variables, such as the current value, energizing cycles, rotational speed, and friction time. The current value and energizing cycle can affect the resistance heat, and the rotational speed of the rotating pin and friction time influence frictional heat generation. Resistance heating before friction heating has a preheating effect on the Cu-Al contact interface and a positive effect on preventing friction heat loss during the friction stage. However, because resistance preheating can soften the copper sheet and affect the contact stress and friction coefficient, it has difficulties that may adversely affect frictional heat generation. Therefore, the optimal combination of welding variables should be determined through simulations and experiments of the spot-welding process to determine the effects of electric resistance preheating on the suggested process. Through this procedure, it is known that the proposed spot-welding process can improve the welding quality during the spot welding of Cu-Al sheets.

Effect of Additional Early-Morning Heating Periods on the Growth and Yield of Cucumber and Heating Load (조조가온기간이 시설재배 오이의 생육과 수량 및 난방부하에 미치는 영향)

  • Kwon Joon Kook;Kang Nam Jun;Lee Jae Han;Kang Kyung Hee;Choi Young Hah
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.245-250
    • /
    • 2004
  • To investigate the effect of early-morning heating periods on growth and yield of cucumber and heating load in a greenhouse cultivation, three additional heating periods (0, 1 and 2 hours) were compared to rise temperature from $12^{\circ}C\;to\;16^{\circ}C$ in the early-morning. Leaf temperature just before opening the thermal screen was $3.3^{\circ}C\;and\;4.1^{\circ}C$ higher in the 1 and 2 hour heating compared to that in the control (0 hour heating), respectively. Photosynthetic rate, conductance to $H_2O$ and transpiration rate of cucumber leaves were the highest in the 2 hour heating, and the lowest in the control. However. the difference between the 1 hour and 2 hour heating was not significant. Inorganic element content in cucumber leaves was not significant among the treatments of duration. Initial growth after planting of cucumber was greater in the 1 and 2 hour heating than that in the control. Yield increased by $11\%\;and\;15\%$ in the 1 hour and 2 hour heating compared to that in the control. respectively. Fuel consumption for heating increased by $12\%\;and\;22\%$ in the 1 hour and 2 hour heating compared to that in the control, respectively. Considering in the yield and fuel consumption for heating. 1 or 2 hours of early morning heating could be effective in temperature management for cucumber in a greenhouse cultivation.

An investigation into Weldline Strength According to Induction Heating Conditions (유도가열 조건에 따른 사출성형품 웰드부의 강도 고찰)

  • Son, Dong-Hwi;Seo, Young-Soo;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.441-444
    • /
    • 2009
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.

  • PDF

Analysis of Heating System for PDP Panel Using $RADCAD^{TM}$ ($RADCAD^{TM}$를 이용한 PDP용 Pane 1 가열 시스템 해석)

  • Kim, Ook-Joong;Hong, Yong-Ju;Park, Young-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.453-458
    • /
    • 2001
  • Analysis of radiation heating system for producing 60" size PDP panels was carried out using $RADCAD^{TM}$ software. Optimum arrangement of infrared heating elements was found to obtain uniform temperature distribution in PDP panel during heating. Heating capacity of each heater was determined to obtain an appropriate maximum panel temperature. Parametric study to find the effect of design parameters such as the thermophysical and optical properties of glass and cooling system was carried out. As a reference system, about 35 kW heating capacity was chosen to obtain about 800 K maximum panel temperature after 30 minute heating. The maximum temperature difference in panel was below 20 K. The maximum/minimum and its difference in the panel were very sensitive to the variation of the emissivity of glass and cooling block.

  • PDF

Application of Curing Method Using the Heating Cable for Cold Weather Concreting (매입형 열선에 의한 한중콘크리트의 보양방법 적용에 관한 연구)

  • 김형래;이정철;김찬수;이명진;김봉주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.769-774
    • /
    • 2001
  • The purpose of this study is to analyze the curing effect of heating cable for concreting in cold weather. An experiment was conducted to evaluate the temperature history of concrete structures cured with embedded heating cables. Results are as follows : In comparison with the non-heating case, applying of heating cable resulted in the rise of temperature in the range of $10^{\circ}C$. In order to get successful results, the optimal pitch length for the embedded heating cables ranged from 20cm to 25cm. When working with the existing curing methods, applying this heating cable would be more effective in concrete curing. Finally, a formula and process was suggested to predict the Internal temperature history of concrete structures under the various curing conditions.

  • PDF

A Study on the Thermal Performance of a Solar House by a F-chart Method (F-chart 설계법(設計法)에 의한 태양열주택(太陽熱住宅)의 난방성능(暖房性能)에 관(關)한 연구(硏究))

  • Lee, Young-Soo;Seoh, Jeong-Ill;Yim, Jang-Soon
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.1-9
    • /
    • 1982
  • This paper presents a method. for estimating the useful output of solar heating sys-terns. Heating load calculations, climatic data and various conditions are used in this procedure to estimate the fraction of the monthly heating load supplied by solar energy for a particular system the design procedure presented in this paper referred to the f-chart method. The results of this study are as follows; 1) The collected energy is not rised lineary to collector area. 2) If the heating area has equivalent solar collector area, the solar energy utilization for space heating is over 90%. 3) Transmittance- absorptance product for radiation at normal incidence, (${\tau}{\alpha}$)/(${\tau}{\alpha}$)n, during most of the heating season is 0.92 for a two-cover collector. 4) Orientation of the collector has little effect on the annual performance of solar heating system within the $15^{\circ}$.

  • PDF

Evaluation on Weight Loss of Spalling Control Fiber by Heating Rate (폭렬저감을 위한 섬유의 가열속도에 따른 중량감소평가)

  • Yu, Sung-Il;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Young-Wook;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.32-33
    • /
    • 2014
  • In this study, evaluation on weight loss properties of spalling control fiber with heating rates has been conducted. For evaluation of this study, 3types of organic fibers(Polyethylene, Polypropylene, Nylon) are used as spaling control fiber. Also, to evaluate the effect of heating rate to spallin control fiber, heating rates are set as 10, 25℃/min. As a result, the start time of weight loss of fiber with various heating rate was delayed as heating rate was increased.

  • PDF

An analysis of the Design heating load calculation in multi-family houses (공동주택 최대난방부하 계산법의 분석)

  • 조동우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Design load calculations which depend on the thermal characteristics of the building structure such as the wall, roof, and fenestration provide the basic data for selecting an HVAC system and its equipment. Most of domestic multi-family houses include a high thermal storage layer like massive concrete structure and a floor heating structure. This study is to compare the results of the design heating load between steady state and unsteady state calculation in order to comprehend the thermal storage effect in multi-family houses. The design heating load under the steady state calculation is estimated from 5.4% to 7.8% larger than that under the unsteady state in the typical floor of a multi-family house model. The design heating load considered the safety factors like a orientation and location factor also is 21.4% to 26.5% larger than that by the unsteady state calculation. So, the safety factors for use of the practicing engineer are analyzed as the main factor of a heating plant oversizing.

  • PDF