• Title/Summary/Keyword: Heating effect

Search Result 2,292, Processing Time 0.03 seconds

The multigroup library processing method for coupled neutron and photon heating calculation of fast reactor

  • Teng Zhang;Xubo Ma;Kui Hu;GuanQun Jia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1204-1212
    • /
    • 2024
  • To accurately calculate the heating distribution of the fast reactor, a neutron-photon library in MATXS format named Knight-B7.1-1968n × 94γ was processed based on the ENDF/B-VII.1 library for ultrafine groups. The neutron cross-section processing code MGGC2.0 was used to generate few-group neutron cross sections in ISOTXS format. Additionally, the self-developed photon cross-section processing code NGAMMA was utilized to generate photon libraries for neutron-photon coupled heating calculations, including photo-atom cross sections for the ISOTXS format, prompt photon production cross sections, and kinetic energy release in materials (KERMA) factors for neutrons and photons, and the self-shielding effect from the capture and fission cross sections of neutron to photon have been taken into account when the photon source generated by neutron is calculated. The interface code GSORCAL was developed to generate the photon source distribution and interface with the DIF3D code to calculate the neutron-photon coupling heating distribution of the fast reactor core. The neutron-photon coupled heating calculation route was verified using the ZPPR-9 benchmark and the RBEC-M benchmark, and the results of the coupled heating calculations were analyzed in comparison with those obtained from the Monte Carlo code MCNP. The calculations show that the library was accurately processed, and the results of the fast reactor neutron-photon coupled heating calculations agree well with those obtained from MCNP.

Comparison of Heating Characteristics of Electric Heating Element Heater and Oil Hot Air Heater in Single Span Greenhouses (전기발열체 난방기 및 유류온풍 난방기의 단동온실 난방 특성 비교)

  • Kwon, Jin Kyung;Kim, Seung Hee;Shin, Young An;Lee, Jae Han;Park, Kyeong Sub;Kang, Youn Koo
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.324-332
    • /
    • 2017
  • The comparative experiments were conducted for single span greenhouses where cucumbers were cultivated to analyze the effect of heating between a carbon fiber electric heating element heater and an oil hot air heater in terms of the inside climate, energy consumption and plant growth. In order to analyze the effect of heating capacity, 6, 9, and 16 kW of electric powers were supplied to the electric heating element for same setting temperature of 15?. As a result, as the heating capacity increased, the number of ON-OFF cycles of the electric heating element and the temperature inside the greenhouse increased proportionally. In the comparison of two heaters, it was shown that the temperature and relative humidity distributions of the electric heating element installed greenhouse was much uniform than those of the oil hot air heater installed greenhouse. The heating energy consumptions during the heating period of 79 days were 867L for the oil hot air heater and 8,959 kWh for the electric heating element heater, and the heating costs were 607 and 403 thousand won respectively. In the electric heating element installed greenhouse, the cucumber growth was slightly better and the yield was 4.3% higher than those of the oil hot air heater installed greenhouse, but there were no statically significant difference in the cucumber growth and yield between greenhouses.

Undrained Behavior of Weathered Granite Soil of Heating-Cooling Repeated Acts Using Temperature Control Triaxial Test (온도변화 삼축압축 실험을 이용한 Heating-Cooling 반복 작용시 화강풍화토의 비배수 거동)

  • Shin, Seung-Min;Sin, Chun-Won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.1-12
    • /
    • 2016
  • In this study, the impact of sand and weathered granite soil is analyzed by changing the internal temperature from $20^{\circ}C{\sim}70^{\circ}C$C by installing a heating coil inside the triaxial cell. To check the effect on weathered granite soil due to increase of temperature and number of heating-coiling cycles are analyzed by measuring the temperature by using thermometer installed inside the triaxial cell and due to that deviator stress also occurred during the consolidated undrained test. To analyze the effect of weathered granite soil with change of temperature during undrained testing. The deviator stress and pore pressure is measured. As a result, pore pressure increases and the deviator stress decreases with rise of temperature.

Temperature distribution in VX-2 hepatoma heated with thermoseed hyperthermia (열소자 온열요법시 VX-2 hepatoma내의 온도 변화에 대한 연구)

  • Choi, Ihl-Bohng;Bahk, Yong-Whee
    • Radiation Oncology Journal
    • /
    • v.12 no.3
    • /
    • pp.295-300
    • /
    • 1994
  • It was the purpose of present study to develop a new thermoseed for heating deep-seated tumors and assessment of the effect of magnetic control on thermoseeds. Aqueous suspension of iron micro spheres (Ferropolysaccharide) was injected directly into the VX-2 hepatoma and heated with 1.2 MHz inductive radiofrequency unit. Aqueous thermoseed suspension was delivered to the tumor by simple percutaneous injection. The limitation of the thermoseed heating method is the positional change of thermoseed particles in the tumor after implantation. The thermoseed particles could enter the systemic blood circulation and cause a severe embolization of a critical organ. To minimize this limitation, we have used the magnetic control after loading the thermoseed in the tumor, W hen ferropolysaccharides were exposed to a strong magnetic field, they magnetized and subsequently exerted a magnetic force on each other, forming larger aggregates of particles. The size of aggregated Particles were too big to enter the systemic blood circulation. Thus, unlike other thermoseed method, we hold the thermoseed particles stationary in the tumor. The temperature of the injected site and immediate vicinity elevated by $4-5^{\circ}C$. The temperature of the surrounding normal hepatic tissue elevated by $1-2^{circ}C$ only. The heating effect within the tumor was variable depending on the density of ferromagnetic aqueous suspension. Our results suggest that inductive heating of tumor injected with ferropolysaccharide solution offers the possibility of effective heat delivery to the defined tumor volume, which is difficult to heat with other heating devices.

  • PDF

Combinational Effect of Moist Heating and Gamma Irradiation on The Inactivation of Trypsin Inhibitory Activity in Soybean

  • Felipe, Penelope;Yang, Yun-Hyoung;Lee, Jeong-Hee;Sok, Dai-Eun;Kim, Hyoung-Chin;Yoon, Won-Kee;Kim, Hwan-Mook;Kim, Mee-Ree
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.732-737
    • /
    • 2005
  • The combinational effect of gamma irradiation and moist heating on the trypsin inhibitor activity (TIA) in soaked and dried soybeans was evaluated by measuring the inhibition using N-benzoyl-DL-arginine-p-nitroanilide (BAPNA) as substrate. Gamma irradiation significantly decreased the TIA level in soybean at doses above 5 kGy, and the $ID_{50}$ (the gamma irradiation dose required to reach 50% inhibition) value for TIA was 13.53 kGy. Soaking prior to gamma irradiation significantly lowered the $ID_{50}$ to 8.44 kGy, and the soaking process enhanced the efficiency to inactivate TIA by as much as 48%. When soaking prior to gamma irradiation was followed by subsequent mild heating ($60^{\circ}C$) process, the $IT_{50}$ (heating time required to reach the 50% inhibition of TIA) value at even 1 kGy (5.28 min) was greatly reduced by over 50% compared to the level for the no-soaking process. In addition, the activation energy of soaking prior to gamma irradiation at 1 kGy was 2.45 kcal/mole, which was also about 50% lower than the 5.10 kcal/mole of dried soybean gamma-irradiated. Based on these results, soaking prior to gamma irradiation is an effective method for TIA inhibition. Furthermore, a combination of two or more processing methods such as soaking, heating and gamma irradiation is much more effective than any single processing method.

Study on Heating Load Characteristics and Thermal Curtain Effects for Simple Silkworm Rearing Houses(II) -Effects of the Thermal Curtain on Energy Preservation and Review of its Application- (간역잠실(簡易蠶室)의 난방부하특성(暖房負荷特性) 및 보온(保溫)커튼 설치(設置)효과에 관한 연구(硏究)(II) -보온(保溫)커튼의 열(熱) 절감(節減) 효과(効果) 및 적응성(適應性) 검토(檢討)-)

  • Choe, K.J.;Jung, D.H.;Park, K.K.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 1991
  • One of the most serious problems in Korean sericulture farms is to improve the adiabatic conditions for the simple silkworm rearing houses which has been widely adapted since early 1980'. Thus, this study is aimed to solve the problems by selecting the thermal screen material and by finding the method of its instalation. For the study, 4 kinds of materials which are (1) TE005,(2) NW60, (3) NW300 and (4) AL110 are selected and 4 different types of methods which are surrounding boundary of rearing bed(type A), surrounding inside of wall and ceiling (type B), installing on inside of wal ony (type C) and installing on ceiling Inly (type D) are installed. Decision criteria of the best combination of screen material and installation methods is made by calculating the heating load coefficients and by testing the application at the simple silkworm rearing houses. The obtained results are summarized as follows ; 1. The effect of thermal screen on reducing the thermal energy is remarkable. It saves energy more 50% than unscreened simple silkworm rearing houses. 2. From a stand point of a good screed material on thermal energy reduction, the NW300, AL110 and PE005 are recommanded materials. However, NW60 and PE005 are regarded as desirable materials from the practical point view. 3. Also, the effect on thermal energy reduction is largely affected by the method of thermal screen installation. The surrounding boundary of the silkworm rearing bed(type A) is the most desirable method to reduce the energy, which saves 56.6% of it. 4. In the practical application, NW60 and type A is considered to be the best combination of material and installation method. By this combination, the level of maximum heating load can be reduced at the rate of 43% for spring season and 40% for autumn season. 5. Another heating method, comparted heating, can be recommended to save the energy.

  • PDF

Effect of Radiation Heat Transfer on the Control of Temperature Gradient in the Induction Heating Furnace for Growing Single Crystals (전자기 유도가열식 단결정 성장로의 온도 구배제어에 있어 복사열 전달의 효과)

  • Park, Tae-Yong;Shin, Yun-Ji;Ha, Minh-Tan;Bae, Si-Young;Lim, Young-Soo;Jeong, Seong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.522-527
    • /
    • 2019
  • In order to fabricate high-quality SiC substrates for power electronic devices, various single crystal growing methods were prepared. These include the physical vapor transport (PVT) and top seeded solution growth (TSSG) methods. All the suggested SiC growth methods generally use induction-heating furnaces. The temperature distribution in this system can be easily adjusted by changing the hot-zone design. Moreover, precise temperature control in the induction-heating furnace is favorably required to grow a high-quality crystal. Therefore, in this study, we analyzed the heat transfer in these furnaces to grow SiC crystals. As the growth temperature of SiC crystals is very high, we evaluated the effect of radiation heat transfer on the temperature distribution in induction-heating furnaces. Based on our simulation results, a heat transfer strategy that controls the radiation heat transfer was suggested to obtain the optimal temperature distribution in the PVT and TSSG methods.

Performance of a Refrigerant Heating Type Heat Pump by Changing of Driving Devices and Heat Exchangers (구동장치 및 열교환기 변경에 따른 냉매가열식 열펌프의 성능특성)

  • Park, Youn-Cheol;Kim, Sang-Hyuk;Kim, Ji-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • When the outdoor air temperature decreased less than the freezing temperature, frost forms at the surface of heat exchangers and it makes the performance degradation of a heat pump system. In this study, a heat pump system has been developed which has a refrigerant heating device as an auxiliarly heating equipment. To reduce power consumptions of the system, a liquid pump, rather than a compressor, was used to drive refrigerant in the heat pump cycle. Ratio of refrigerant mass flow between a refrigerant heating heat exchanger(GHX) and a outdoor plate heat exchanger(PHX) was varied and the system performance was measured and analyzed. As results, when the refrigerant flow rate to the GHX was decreased, the system performance is decreased due to heat absorption capability restriction of the GHX and small variation of the power consumption in the compressor. The effect on the evaporating and condensing pressure by the distribution ratio of the refrigerant to the each heat exchanger is small compare to the effect by the frequency change in the compressor. When the compressor was replaced by the liquid pump, the capacity of the system decreased a little, however the power consumption decrease approximately 80% compare with the power used in the compressor.

Experimental study on the influence of heating surface inclination angle on heat transfer and CHF performance for pool boiling

  • Wang, Chenglong;Li, Panxiao;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.61-71
    • /
    • 2022
  • Pool boiling heat transfer is widely applied in nuclear engineering fields. The influence of heating surface orientation on the pool boiling heat transfer has received extensive attention. In this study, the heating surface with different roughness was adopted to conduct pool boiling experiments at different inclination angles. Based on the boiling curves and bubble images, the effects of inclination angle on the pool boiling heat transfer and critical heat flux were analyzed. When the inclination angle was bigger than 90°, the bubble size increased with the increase of inclination angle. Both the bubble departure frequency and critical heat flux decreased as the inclination angle increased. The existing theoretical models about pool boiling heat transfer and critical heat flux were compared. From the perspective of bubble agitation model and Hot/Dry spot model, the experimental phenomena could be explained reasonably. The enlargement of bubble not only could enhance the agitation of nearby liquid but also would cause the bubble to stay longer on the heating surface. Consequently, the effect of inclination angle on the pool boiling heat transfer was not conspicuous. With the increase of inclination angle, the rewetting of heating surface became much more difficult. It has negative effect on the critical heat flux. This work provides experimental data basis for heat transfer and CHF performance of pool boiling.

Study on Characteristics Comparison of Unpowered Cooling and Heating Combined Device using Solar Heat (태양열을 이용한 무동력 냉난방 겸용장치의 특성 비교 연구)

  • Lee, Jaehan;Chun, Taekyu;Yang, Youngjoon
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.20-26
    • /
    • 2018
  • As the global warming due to greenhouse effect has become serious problem, it is necessary to introduce the technology, for instance, such as diversity or saving of energy to reduce the use of fossil fuel. The purpose of this study was to investigate the characteristics on materials of absorption plate, unpowered and minimum use of power in cooling and heating combined device. As the results, it was observed that, in case of summer, since temperature of absorption device of solar heat(ADSH) was lower than that of no ADSH, cooling effect was insignificant in case of being not installed cold-reservoir. However, in case of winter, heating effect was certified even though the power was not used. At secondhand, the performance of ADSH with Cu was higher 2 times than that of ADSH with Al.