• Title/Summary/Keyword: Heating and Cooling Load

Search Result 383, Processing Time 0.024 seconds

Analysis of impact factors affecting on the stack effect in high-rise building (고층빌딩 연돌 현상의 영향인자 분석)

  • Oh, Jin-Hwan;Song, Doo-Sam;Yoon, Sung-Min;Nam, Yujin
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.95-101
    • /
    • 2016
  • Purpose: Recently, high-rise buildings are popular in korea due to high rate of land usage and cost performance in urban area. However, high-rise building causes several problems such as safety issues, cooling/heating load, stack effect, disaster prevention etc. The stack effect is one of the representative problems. Even though there are many researches on stack effect, there are few studies on design guideline considering local condition. Method: This study focuses on the change of pressure distribution according to the design factors which affects the airflow in high-rise residential buildings by simulation analysis. In this study, city, building floor, stairwell door leakage area, elevator door leakage area and changes of layout were considered ad the design factor. Result: The simulation results indicate that building height and ambient air temperature are significant design factor for stack effect.

Experimental Study on $CO_2$ Level Fluctuation by Door-opening of Subway (전동차 출입문 개폐에 따른 객실 이산화탄소 농도변화의 실험적 연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Park, Eun-Young;Kim, Se-Young;Jung, Mi-Young;Ham, Dae-Joo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1652-1655
    • /
    • 2008
  • Indoor air quality (IAQ) of subway becomes a key issue as the IAQ guidelines for public transportation published. There are two major sources regarding IAQ of subway; One is the sources coming from outdoor air and the other is sources of inside. Particulate matters smaller than 10 micrometer (PM10) and carbon dioxide ($CO_2$) are recognized as the one of the most severe pollutants in Korea. The source of PM10 is mainly coming from outdoor air, however, the source of $CO_2$ is coming from passengers exhaust. According to the guidelines, the level of $CO_2$ should be lower than 2500ppm for normal operating time and lower than 3500ppm for rush hour. In order to satisfy these guidelines, the volume of mechanical ventilation should be increase which consumes extra energy for heating or cooling. Therefore, the optimum volume of mechanical ventilation should be calculated for energy saving. In this study, we measured the natural ventilation rate by door-opening which can reduce the load of mechanical ventilation. The $CO_2$ generator and sensors were used to measure the change of $CO_2$ by periodic door-opening of subway.

  • PDF

Assessment on Thermal Environment and Human Thermal Comfort in Residential Building Block through Field Measurement (실측을 통한 공동주택 단지 내에서의 온열환경 및 거주자 쾌적감 평가에 관한 연구)

  • Lim, Jong-Yeon;Hwang, Hyo-Keun;Song, Doo-Sam;Kim, Tae-Yeon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.311-317
    • /
    • 2008
  • As outdoor environment become worse due to concentration of population in large cities, the importance of environmental control strategies such as the arrangement of green space or water space and ventilation paths, has been increasingly recognized. However, most of the studies focus on the assessment on outdoor thermal environment, few studies focus on the interrelationship between thermal environment in residential block and human thermal comfort. The aims of this study is to develop the outdoor planning method to reduce the heating/cooling load in an apartment unit or entire block by the sustainable approaches in outdoor environmental design. In this paper, on the basis of the prior studies, the effect of the outdoor thermal environment on human thermal comfort will be analysed.

  • PDF

Formability Evaluation of the Vacuum Resin Transfer Molding of a CFRP Composite Automobile Seat Cross Part (탄소섬유복합재료의 시트크로스 부품에서 진공수지주입성형에 의한 성형성 평가)

  • Kim, Kun-Young;Kwak, Sung-Hun;Han, Gyu-Dong;Park, Jin-Seok;Cho, Jun-Haeng;Lee, Chang-Hoon;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.24-29
    • /
    • 2017
  • In this study, a seat cross member was fabricated by optimizing the resin transfer molding processing of CFRP (Carbon Fiber Reinforced Plastics) materials. This seat cross member is used in automotive underbody parts and provides side impact support. The seat cross was manufactured via vacuum resin transfer molding. The process included 1min of resin injection, 8 mins of heating, and 1 min of cooling, for a total molding time of 10mins. Tensile test results showed an average breaking load of 21.50kN, a tensile strength of 404 MPa, and an elastic modulus of 46.2 GPa. As a result, the CFRP seat cross provides the same strength as a similar steel part, but weighs 42% less.

Development of a High Heat Load Test Facility KoHLT-1 for a Testing of Nuclear Fusion Reactor Components (핵융합로부품 시험을 위한 고열부하 시험시설 KoHLT-1 구축)

  • Bae, Young-Dug;Kim, Suk-Kwon;Lee, Dong-Won;Shin, Hee-Yun;Hong, Bong-Guen
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.318-330
    • /
    • 2009
  • A high heat flux test facility using a graphite heating panel was constructed and is presently in operation at Korea Atomic Energy Research Institute, which is called KoHLT-1. Its major purpose is to carry out a thermal cycle test to verify the integrity of a HIP (hot isostatic pressing) bonded Be mockups which were fabricated for developing HIP joining technology to bond different metals, i.e., Be-to-CuCrZr and CuCrZr-to-SS316L, for the ITER (International Thermonuclear Experimental Reactor) first wall. The KoHLT-1 consists of a graphite heating panel, a box-type test chamber with water-cooling jackets, an electrical DC power supply, a water-cooling system, an evacuation system, an He gas system, and some diagnostics, which are equipped in an authorized laboratory with a special ventilation system for the Be treatment. The graphite heater is placed between two mockups, and the gap distance between the heater and the mockup is adjusted to $2{\sim}3\;mm$. We designed and fabricated several graphite heating panels to have various heating areas depending on the tested mockups, and to have the electrical resistances of $0.2{\sim}0.5$ ohms during high temperature operation. The heater is connected to an electrical DC power supply of 100 V/400 A. The heat flux is easily controlled by the pre-programmed control system which consists of a personal computer and a multi function module. The heat fluxes on the two mockups are deduced from the flow rate and the coolant inlet/out temperatures by a calorimetric method. We have carried out the thermal cycle tests of various Be mockups, and the reliability of the KoHLT-1 for long time operation at a high heat flux was verified, and its broad applicability is promising.

Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

  • Pedulla, Eugenio;Lo Savio, Fabio;La Rosa, Giusy Rita Maria;Miccoli, Gabriele;Bruno, Elena;Rapisarda, Silvia;Chang, Seok Woo;Rapisarda, Ernesto;La Rosa, Guido;Gambarini, Gianluca;Testarelli, Luca
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.25.1-25.10
    • /
    • 2018
  • Objectives: To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods: One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal ($60^{\circ}$ angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results: Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p < 0.001). No significant difference was observed between the files in the maximum torque load, while a significantly higher angular rotation to fracture was observed for M3 Pro Gold (p < 0.05). In the DSC analysis, the M3 Pro Gold files showed one prominent peak on the heating curve and 2 prominent peaks on the cooling curve. In contrast, the M3 Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions: The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase.

Design and Energy Performance Evaluation of Plus Energy House (플러스에너지하우스 설계 및 에너지 성능 평가)

  • Kim, Min-Hwi;Lim, Hee-Won;Shin, U-Cheul;Kim, Hyo-Jung;Kim, Hyun-Ki;Kim, Jong-Kyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.55-66
    • /
    • 2018
  • South Korea aims to shift the 20 percent of electricity supplement from the fossil fuel including the nuclear to renewable energy systems by 2030. In order to realize this agenda in the buildings, the plus energy house is necessary to increase the renewable energy supplement beyond the zero energy house. This paper suggested KePSH (KIER Energy-Plus Solar House) and energy performance of house and renewable energy systems was investigated. The KePSH has the target of generating 40% surplus energy than the conventional house energy consumption. The plus energy house is the house that generates surplus energy from the renewable energy sources than that consumes. In order to minimize the cooling and heating load of the house, the shape design and passive parameters design were conducted. Based on the experimental data of the plug load in the typical house, the total energy consumption of the house was estimated. This paper also suggested renewable energy sources integrated HVAC system using air-source heat pump system. Two cases of renewable energy system integration methods were suggested, and energy performance of the cases was investigated using TRNSYS 17 program. The results showed that the BIPV (building integrated photovoltaic) system (i.e., CASE 1) and BIPV and BIST system (i.e., CASE 2) shows 42% and 29% of plus energy rate, respectivey. Also, CASE 1 can generate 59% more surplus energy compared with the CASE 2 under the same installation area.

Greenhouse Gas Mitigation Effect Analysis by Establishing Additional Heat Storage System for Combined Heat and Power Plant (열병합발전소에서의 축열조 증설에 의한 온실가스 감축 효과 분석)

  • Kim, Shang Mork;Yoon, Joong Hwan;Lim, Kyoung Mi
    • Journal of Climate Change Research
    • /
    • v.2 no.3
    • /
    • pp.175-189
    • /
    • 2011
  • In this research, we describe the methodology and the quantification about GHG reduction effects, expected by optimization of operation mode according to establishing additional heat storage system of Bundang Combined Cycle Power Plant. As an intermediate form of General Combined Cycle Power Plant and Heat supply only district heating plant, Bundang Combined Cycle Power Plant(and Ilsan, Anyang, Bucheon) is possible to satisfy demand for the electrical load and thermal load capacity at the same time through changes to the operation mode itself. Therefore, through the operating transition of high-efficiency mode that the condenser cooling water is recovered and supplied to district heat and cooling, establishing additional heat storage system have flexible supply ability at the power and heat market. In this research, We calculated using the operating performance for the last three years(2008~2010) and efficiency of each mode-specific values. As a result, GHG reduction effects were calculated as $97.95kg_{-}CO_2/Gcal$ per heat energy 1 Gcal supplied at the heat storage system and we expected emmision reduction effect about $13,500Ton_{-}CO_2/yr$.

Development of Greenhouse Cooling and Heating Load Calculation Program Based on Mobile (모바일 기반 온실 냉난방 부하 산정 프로그램 개발)

  • Moon, Jong Pil;Bang, Ji Woong;Hwang, Jeongsu;Jang, Jae Kyung;Yun, Sung Wook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.419-428
    • /
    • 2021
  • In order to develope a mobile-based greenhouse energy calculation program, firstly, the overall thermal transmittance of 10 types of major covers and 16 types of insulation materials were measured. In addition, to estimate the overall thermal transmittance when the cover and insulation materials were installed in double or triple layers, 24 combinations of double installations and 59 combinations of triple installations were measured using the hotbox. Also, the overall thermal transmittance value for a single material and the thermal resistance value were used to calculate the overall thermal transmittance value at the time of multi-layer installation of covering and insulating materials, and the linear regression equation was derived to correct the error with the measured values. As a result of developing the model for estimating thermal transmittance when installing multiple layers of coverings and insulating materials based on the value of overall thermal transmittance of a single-material, the model evaluation index was 0.90 (good when it is 0.5 or more), indicating that the estimated value was very close to the actual value. In addition, as a result of the on-site test, it was evaluated that the estimated heat saving rate was smaller than the actual value with a relative error of 2%. Based on these results, a mobile-based greenhouse energy calculation program was developed that was implemented as an HTML5 standard web-based mobile web application and was designed to work with various mobile device and PC browsers with N-Screen support. It had functions to provides the overall thermal transmittance(heating load coefficient) for each combination of greenhouse coverings and thermal insulation materials and to evaluate the energy consumption during a specific period of the target greenhouse. It was estimated that an energy-saving greenhouse design would be possible with the optimal selection of coverings and insulation materials according to the region and shape of the greenhouse.

A study of geothermal heat dump for solar collectors overheat protection (태양열 집열관 과열방지를 위한 지중열교환기 연구)

  • Hwang, Hyun-Chang;Chi, Ri-Guang;Lee, Kye-Bock;Rhi, Seok-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.616-622
    • /
    • 2016
  • The heating load using solar hot water is lower in summer than in the other seasons. This decreased heating load leads to the overheating solar collectors and related components. To prevent overheating of the solar collectors, air cooling and shading shields were used. On the other hand, it requires additional mechanical components, and reduces the system reliability. The geothermal heat dump system to release the high temperature heat (over $150^{\circ}C$) transferred from the heat pipe solar collectors was investigated in the present study. Research on the heat dump to cool the solar collector is rare. Therefore, the present study was carried out to collect possible data of a geothermal heat dump to cool the solar collector. A helical type geothermal heat exchanger was buried at a 1.2m depth. Experimentally and numerically, the geothermal heat dump was investigated in terms of the effects of parameters, such as the quantity of solar radiation, aperture area of the collector and the mass flow rate. A pipe length of 50m on the geothermal heat exchanger was suitable with a 0.33 kg/s flow rate. The water reservoir was a possible co-operation solution linked to the geothermal heat exchanger.