• Title/Summary/Keyword: Heating and Cooling Energy

Search Result 940, Processing Time 0.03 seconds

Effect analysis of geothermal cooling and heating system (지열(수온차)냉난방 시스템 효과 분석)

  • Chung, Hoon;Ma, Bum-Gu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.365-368
    • /
    • 2008
  • This experiment is significant because we can provide information by measuring effect of energy saving for whom plan to install a geothermal heat & cooling system. The result shows geothemal system can save about 50% of energy(heating : 35%, cooling : 60%) and we verified that when using curtain can help saving $4{\sim}12%$ of energy additionally

  • PDF

A Study of Cooling and Heating Load Changes with Roof Type Solar Panels Installed on Factory Roof (지붕형 태양광발전 패널의 공장 지붕 설치에 따른 냉방 및 난방 부하 변화량 연구)

  • Jo, Ho-Hyeon;Kim, Jung-Min;Kim, Young Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2020
  • In this study, effect of reinforced insulation on heating and cooling loads were studied due to installation of PV panels on factory building roof with a floor area of 12,960 m2. For PV panel installation, combination of aluminum, polyurethane, air, polystyrene and steel materials were added to the original roof, which increased thermal insulation performance. Half of the roof were covered with PV panel and the other half without. Temperature and relative humidity were measured for 8 days during summer season for both indoor spaces. PV panel showed the effect of lowering the indoor space temperature by 0.6℃. TRNSYS dynamic simulation showed that with PV panel, cooling load per area is reduced by 1.7 W/m2 and heating by 10.0 W/m2. PV panels installed on building roof not only generate electricity but also can save energy by reducing cooling and heating loads.

Energy Performance Evaluation of Apartment Houses According to Window Energy Consumption Efficiency Rating System in Korea (창호 에너지소비효율등급제에 따른 공동주택의 열성능 평가)

  • Lim, Hee Won;Kim, Dong Yun;Lee, Soo Man;An, Jung Hyuk;Yoon, Jong Ho;Shin, U Cheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.159-166
    • /
    • 2018
  • The Korean fenestration energy consumption efficiency rating system only considers thermal performance of the heat transfer coefficient (U-value) and airtightness excluding optical characteristics of the solar heat gain coefficient (SHGC). This study analyzed annual heating and cooling energy requirements on the middle floor of apartment by optical and thermal performance of windows to evaluate the suitability of the rating system. One hundred and twenty-eight windows were analyzed using THERM and WINDOW 7.4, and energy simulation for a reference model of an apartment house facing south was performed using TRNSYS 17. The results showed that window performance was the main factor in the heating and cooling load. The heating load of the reference model was 539 kWh to 2,022 kW, and the cooling load was 376 kWh to 1,443 kWh. The coefficient of determination ($R^2$) of the heating and cooling loads driven from the SHGC were 0.7437 and 0.9869, which are more compatible than those from the U-value, 0.0558 and 0.4781. Therefore, it is not reasonable to evaluate the energy performance of windows using only the U-value, and the Korean fenestration energy consumption efficiency rating system requires a new evaluation standard, including SHGC.

Optimal Capacity Determination of Hydrogen Fuel Cell Technology Based Trigeneration System And Prediction of Semi-closed Greenhouse Dynamic Energy Loads Using Building Energy Simulation (건물 에너지 시뮬레이션을 이용한 반밀폐형 온실의 동적 에너지 부하 예측 및 수소연료전지 3중 열병합 시스템 적정 용량 산정)

  • Seung-Hun Lee;Rack-Woo Kim;Chan-Min Kim;Hee-Woong Seok;Sungwook Yoon
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.181-189
    • /
    • 2023
  • Hydrogen has gained attention as an environmentally friendly energy source among various renewable options, however, its application in agriculture remains limited. This study aims to apply the hydrogen fuel cell triple heat-combining system, originally not designed for greenhouses, to greenhouses in order to save energy and reduce greenhouse gas emissions. This system can produce heating, cooling, and electricity from hydrogen while recovering waste heat. To implement a hydrogen fuel cell triple heat-combining system in a greenhouse, it is crucial to evaluate the greenhouse's heating and cooling load. Accurate analysis of these loads requires considering factors such as greenhouse configuration, existing heating and cooling systems, and specific crop types being cultivated. Consequently, this study aimed to estimate the cooling and heating load using building energy simulation (BES). This study collected and analyzed meteorological data from 2012 to 2021 for semi-enclosed greenhouses cultivating tomatoes in Jeonju City. The covering material and framework were modeled based on the greenhouse design, and crop energy and soil energy were taken into account. To verify the effectiveness of the building energy simulation, we conducted analyses with and without crops, as well as static and dynamic energy analyses. Furthermore, we calculated the average maximum heating capacity of 449,578 kJ·h-1 and the average cooling capacity of 431,187 kJ·h-1 from the monthly maximum cooling and heating load analyses.

A Study on the Energy Storage System Using Air Source Heat Pump for Heating and Cooling (공기 열원을 이용한 축열식 냉난방 시스템 연구)

  • Kim, Ook-Joong;Lee, Kong-Hoon;Seo, Jeong-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1125-1130
    • /
    • 2006
  • An air source heat pump system producing the ice and water storage energy for cooling and heating of building has been proposed. Cycle design and simulation considering energy balance between heating and cooling capacity has been carried out. The roles of the capacity controlled compressor, refrigerant heating device and air preheating are investigated in detail. System control logic for meeting the predetermined heating capacity when the system is operated at cold climate condition is suggested. Some anticipated problems of the proposed system are also described.

  • PDF

Heating and Cooling Energy Demand Analysis of Standard Rural House Models (농어촌 주택 표준모델의 냉난방에너지요구량 분석)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3307-3314
    • /
    • 2012
  • The annual energy demand of the standard rural house models was analyzed using the DesignBuilder. Indoor temperature set-point, U-value of outer wall, type of window, and degree of ventilation were selected as simulation parameters. In all the simulation cases, heating energy demand was higher than cooling energy demand regardless of the building size. When the lower U-value of the outer wall was applied to account for the thicker insulation layer, heating energy demand was decreased while cooling energy demand was increased. However, it is better to reduce the area of outer wall which is directly exposed to outdoor air because reducing the U-value of the outer wall is not effective in decreasing heating energy demand. Among the four different window types, the double skin window is most favorable because heating energy demand is the lowest. For a fixed infiltration rate, higher ventilation rate resulted in an increased heating energy demand and had minor impact on cooling energy demand. As long as the indoor air quality is acceptable, lower ventilation rate is favorable to reduce the annual energy demand.

Analysis of the Energy Saving Effect for the External Insulation Construction by Building Load Calculation Method (건물 부하계산 프로그램을 이용한 외단열 시공의 에너지 절감 효과 분석)

  • Park, Jaejoong;Myeong, Jemin;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.97-104
    • /
    • 2017
  • Reinforcement of insulation in apartment buildings reduces the heating and cooling energy consumption by lowering the heat transfer in the building envelope. There are differences between internal and external insulation methods in heat transmission properties. However, some building load calculation programs cannot analysis the differences between the two. This is because these programs do no account for the timelag or thermal storage effect of the wall according to the location of insulation. In this study, the heat transmission characteristics of internal and external insulation were analyzed by EnergyPlus, and heating and cooling energy demand was compared. The results showed that external insulation system had lower heating and cooling loads than internal insulation system. Also the heat transfer rate of external insulation is steadier than internal insulation. About 13.6% of heating and cooling energy demand decreased when the outdoor wall was finished with external insulation compared to the demand with internal insulation.

A Study on Optimal Operation of Summer Season Cooling System with Numbers of Heat Pumps (다수의 히트펌프로 구성된 냉난방시스템에서 하절기 히트펌프의 최적운전에 관한 연구)

  • Shin, Kwan-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • Heat-pump system has a special feature that provides heating operation in winter season and cooling operation in summer season with a single system. It also has a merit that absorbs and makes use of wastewater heat, terrestrial heat, and heat energy from the air. Because heat-pump system uses midnight electric power, it decreases power peak load and is very economical as a result. By using the property that energy source is converted to low temperature when losing the heat, high temperature energy source is used to provide heating water and low temperature energy source is used to provide cooling water simultaneously in summer season. This study made up a heat-pump system with 4 air heat sources and a water heat source and implemented the optimal operation algorithm that works with numbers of heat pumps to operate them efficiently. With the heat-pump system, we applied it to cooling and heating operation in summer season operation mode in a real building.

Prediction of Greenhouse Energy Loads using Building Energy Simulation (BES) (BES 프로그램을 이용한 국내 대표적 대형온실의 에너지 부하 예측)

  • Lee, Sung-Bok;Lee, In-Bok;Homg, Se-Woon;Seo, Il-Hwan;Bitog, P. Jessie;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Han, Chang-Pyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.113-124
    • /
    • 2012
  • Reliable estimation of energy load inside the greenhouse and the selection of cooling and heating facilities are very important preceding factors to save energy as well as initial and maintenance costs of operating a greenhouse. Recently, building energy simulation (BES) technique to simulate a model similar to the actual conditions through a variety of dynamic simulation methods, and predict and analyze the flow of energy is being actively introduced and developed. As a fundamental research to apply the BES technique which is mainly used for analysis of general buildings, to greenhouse, this research designed four types of naturally-ventilated greenhouses using one of commercial programs, TRNSYS, and then compared and analyzed their energy load properties, by applying meteorological data collected from six regions in Korea. When comparing the greenhouse load of each region depending on latitude and topographical characteristics through simulation, Chuncheon had nearly 9~49 % higher heating load per year than other regions, but its annual cooling load was the reverse to it. Except for Jeju, 1-2W type greenhouses in five regions showed about 17 % higher heating load than a widespan type greenhouse, and 1-2W type greenhouses in Chuncheon, Suwon, Cheongju, Daegu, Cheonju and Jeju had 23 %, 20 %, 17 %, 16 %, 18 % and 20 % higher cooling load respectively than a wide span-type one. Glasshouse and vinyl greenhouse showed 8~11 % and 10~12 % differences respectively in heating load, while 2~10 % and 7~10 % differences in cooling load respectively.

The Energy Performance & Economy Efficiency Evaluation of Microturbine Installed in Hospital buildings (대형병원에서 마이크로터빈 이용한 열병합시스템 에너지성능 및 경제성 분석)

  • Kim, Byung-Soo;Gil, Young-Wok;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.176-183
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat, and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30[%] after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40[%]. If electricity energy and waste heat in turbine are used, 56[%] of heating energy and 67[%] of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70[%].