• 제목/요약/키워드: Heating and Cooling Energy

검색결과 943건 처리시간 0.022초

남부지역 주거건물의 외피단열변화에 따른 에너지소비량 예측 (Prediction of the Amount of Energy Consumption by Variation in Envelope Insulation on a Detached House in Southern Part of Korea)

  • 문진우;한승훈;오세규
    • 한국주거학회논문집
    • /
    • 제22권1호
    • /
    • pp.115-122
    • /
    • 2011
  • This study aimed at quantifying the impact of envelope insulation on energy consumption for thermal controls in residential buildings in southern part of Korea. A series of parametric simulations for a range of R-values of walls, roof, floor, and windows were computationally conducted for a prototypical Korean detached house. Analysis revealed that the total amount of heat gain was larger than that of heat loss, while the amount of energy for cooling was smaller than that for heating due to the difference of system efficiency; the envelope heat transfer was more significant for the heat loss, thus, the increase of the envelope insulation was more effective to reduce heating load; and there were certain levels of envelope insulation after which the energy saving effect was not significant. These findings are expected to be a fundamental database for the decision of proper insulation level in Korean residential buildings.

공동주택의 단열 및 차양에 따른 구체축열시스템 냉방성능 평가 (Evaluation on Cooling Performance of Thermally Activated Building System by Insulation and Shading Conditions in Apartments)

  • 유미혜;여명석;이유지;정웅준;박상훈;김광우
    • 한국주거학회논문집
    • /
    • 제23권2호
    • /
    • pp.107-114
    • /
    • 2012
  • Thermally Activated Building System(TABS) is a radiant heating and cooling system which uses structures as thermal storage by embedding pipes in a concrete slab. Using TABS as the cooling system in residential buildings can reduce energy consumption and peak loads. But the ratio of cooling loads handled by TABS is low in the residential buildings which are significantly influenced by outside condition because condensation and over-cooling may occur. However, recent interest on energy-saving buildings is increasing and new residential buildings are expected to be less influenced by outside with high-insulation and shading. In such residential buildings, the heating and cooling loads and the range of load changes reduce. So the ratio of loads handled by TABS can increase. Therefore, this research investigates the cooling performance and energy performance of TABS in the residential buildings with less influence from outside using the simulation.

가정용 지열원 열펌프 시스템의 냉난방 성능 특성 연구 (An Experimental Study on the Cooling and Heating Performance of a Residential Ground Source Heat Pump System)

  • 공형진;강성재;윤경식;임효재
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.156-163
    • /
    • 2013
  • Ground Source Heat Pump (GSHP) systems utilize geothermal energy as a thermal source or sink, for heating, cooling and domestic hot water. It is well known that GSHP is environmentally friendly, and saves energy dramatically. For this reason, many investigative researches have been conducted on commercial and governmental buildings. However, studies on residential GSHP are few, because of the small capacity and cost. In this study, we experimented with the characteristic performance of heating, cooling and seasonal performance factor for a residential GSHP system, which consisted of two 180 m deep u-tube ground heat exchangers, a heat pump and measurement instruments. The installed capacity of the heat pump was 5RT, and the conditioning area was $62.23m^2$. From the experimental results, the cooling COP of the heat pump was 4.13, and the system COP was 3.51, while the CSPF was 3.32. On the other hand, the heating COP of the heat pump was 3.87, and the system COP was 3.39, while the HSPF was 3.39. Also, in-situ cooling COP and capacity were 93.7% and 96.4% compared with the EWT certification data, respectively, and that of heating were 98.3% and 95.7%, respectively.

대규모 고등학교의 냉난방 및 신재생에너지시스템 적용방안에 관한 연구 (A Study on the Application Plan of Air-Conditioning and New and Renewable Systems in the Large High Schools)

  • 김지연;박효순;김성실;서승직
    • 설비공학논문집
    • /
    • 제21권10호
    • /
    • pp.564-574
    • /
    • 2009
  • The study is conducted to study a new, optimum and new and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and hot water supply energy saving efficiencies for educational facilities. Therefore, this research implemented a study on the new and renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 475.6 kW+highly efficient electronic cooling/heating device(EHP) 545.2 kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 261kW+solar heat collector $240\;m^2$+highly efficient electronic cooling/heating device(EHP) 759.8 kW.

데이터센터 냉방시스템 고효율화를 위한 국내 수열에너지 보급 제도 개선에 관한 연구 (A Study on the Improvement of the Water Source Energy Distribution Regulation for High Efficient Data Center Cooling System in Korea)

  • 조용;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.21-29
    • /
    • 2021
  • In this study, the current regulation of the water source energy, one of the renewable energy, was analyzed, and the improvement plan for the high efficient data center cooling system was suggested. In the improvement plan, the design and construction guidelines of the water source energy system permit to adopt the cooling and heating system with or without heat pump. In addition, it should also include the system operated in the cooling mode only all year-round. The domestic test standards to consider the water source operating conditions should be developed. Especially, it is highly recommended that the test standards to include the system with forced cooling and free cooling modes related with the enhanced data center cooling system adopting the water source energy.

하수열원 열펌프 시스템의 성능 시뮬레이션 (A Characteristics Simulation of Heat Pump System for Sewage Water as a Heat Source)

  • 박일환;장기창;이영수;윤형기;백영진
    • 설비공학논문집
    • /
    • 제20권4호
    • /
    • pp.280-286
    • /
    • 2008
  • In this study, characteristics simulation of heat pump system is investigated for heating and cooling using sewage water as a heat source. A simulation program for preestimate operation characteristics of heat pump system is developed. The performance of this system is resolved by several variables and the characteristics which is based on actual air and sewage temperature data. The simulation results agree well with the experimental values of COP. In the analysis of system characteristics, the COP is changed between $3\sim5$ in winter season for heating load, $4\sim6$ in summer season for cooling load. As the results of Life Cycle Cost analysis over a 15 year life cycle, the energy cost could be reduced by 250 million won if a heat pump system was used instead of a conventional boiler and an absorbtion refrigerator on the office building.

IPCC SRES 시나리오에 따른 우리나라의 미래 냉난방도일 전망: CCSM3와 MM5 모델 활용 (Projection of Future Heating and Cooling Degree Days over South Korea under the IPCC SRES Scenarios: An Experiment with CCSM3 and MM5 Models)

  • 최진영;송창근;김덕래;홍성철;홍유덕;이재범
    • 한국기후변화학회지
    • /
    • 제4권2호
    • /
    • pp.141-158
    • /
    • 2013
  • 본 연구에서는 IPCC SRES 6개 기후변화 시나리오(A2, A1B, A1FI, A1T, B1, and B2)를 기반으로 우리나라의 현재(1996~2005년)와 미래(2046~2055년, 2091~2100년)에 대한 냉난방도일을 전망하였다. 이를 위하여 전구 기후모델(CCSM3)의 미래 전망 결과를 지역규모 기후모델(MM5)을 이용한 다운스케일링을 통해 고해상도(18km)의 기온 전망을 수행하였다. 21세기 말의 한반도 기온은 현재 대비 약 $1.2{\sim}3.4^{\circ}C$ 수준까지 증가하는 것으로 전망된다. 기온 전망 결과를 이용하여 7개 권역별(서울 경기, 강원 산간, 중부 내륙, 남부 내륙, 남부 해안, 영동 울릉, 제주) 냉난방도일을 전망한 결과, 21세기 말의 난방도일은 현재 대비 8~25% 수준까지 감소하는 반면에 냉방도일은 242~1,448%까지 증가하였다. 또한, 난방기간은 약 1개월 정도 감소하며, 냉방기간은 최대 2개월 이상 증가하는 것으로 나타났다. 따라서 현재에 비해 미래의 난방에너지 수요는 감소하지만, 냉방에너지 수요는 증가할 것으로 예측된다. 특히, 이러한 변화는 타 권역에 비해 강원산간권역과 제주권역에서 뚜렷하게 나타날 것으로 예측된다. 따라서 미래에는 난방을 위한 화석에너지보다 냉방에너지로 사용되는 전기에너지에 대한 수요관리가 현재보다 더욱 중요해질 수 있음을 의미한다.

지하도 상가 냉난방.환기 시스템의 난방운전 특성 연구 (An Experimental Study on the Heating Characteristics of HVAC Systems for Shopping Center in Underground Passage)

  • 이홍철;황인주;김태형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2989-2994
    • /
    • 2008
  • The shopping center in underground passage for efficient space utilization is increased in urban area. This study describes operation characteristics of HVAC systems with ventilation and individual heating and cooling unit for shopping center in underground passage. In order to compare energy saving, thermal environment and installation space, etc., an integrated simulator with heat production and distribution system was designed and constructed. Energy delivery efficiency is improved over 20%, and energy saving of the hybrid system is calculated as over 30% compared to conventional all air type in the case of heating. And also the results showed that humidity decreased about $5{\sim}6%$, also characteristics of thermal control is improved over 34%.

  • PDF

KNU 식물공장의 냉난방 에너지 부하 해석에 관한 연구 (A Study on the Heating and Cooling Energy Load Analysis of the KNU Plant Factory)

  • 이찬규;김우태
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1419-1426
    • /
    • 2012
  • KNU 식물공장 모델의 냉난방 에너지 부하를 DesignBuilder를 이용하여 해석하였다. 실내설정온도, LED 보광주기, LED 보광량, 유리외피의 구조에 따른 에너지 소모량을 분석하였다. LED 보광이 없는 식물공장의 실내설정온도를 상추의 적정 생육온도인 $20^{\circ}C$를 중심으로 $15^{\circ}C$, $25^{\circ}C$로 변화시키면서 일정온도로 유지하는데 필요한 연간 냉난방부하를 분석하였다. $15^{\circ}C$일 때 냉방부하, $25^{\circ}C$일 때 난방부하가 가장 크게 나타났다. 상추 재배에 필요한 LED 보광 적용 시 난방부하는 감소하지만 냉방부하가 약 6배 증가한다. 또한 LED 보광 시 주간보다는 야간보광이 냉난방부하 감소에 유리한 결과를 주었다. 식물공장 외피가 냉난방부하에 미치는 영향을 비교하기 위하여 다섯 가지 종류의 외피를 적용하여 계산하였다. 이중창호의 열관류율이 작을수록 식물공장의 난방부하는 감소하고 냉방부하는 증가하였다. 재배할 작물의 적정생장온도 설정, LED 및 재배설비의 내부발열량에 따른 적절한 외피선택, 다양한 패시브 및 액티브 에너지 절감기술의 적용으로 냉방부하를 감소시키는 것이 식물공장 운영에 중요한 요소로 판단된다.

대한민국 표준기상데이터의 변화추이와 건물부하량에 관한 기초연구 (Basic research on the Building Energy Load Depending on The Climate Change in Korea)

  • 유호천;이관호;강현구
    • 한국태양에너지학회 논문집
    • /
    • 제29권3호
    • /
    • pp.66-72
    • /
    • 2009
  • As 'Low Carbon Green Building' is highly required, programs to evaluate building performance are actively and commonly used. For most of these programs, dynamic responses of buildings against external weather changes are very important. In order to simulate the programs, weather data of each region must be properly entered to estimate accurate amount of building energy consumption. To this end, the existing weather data and weather data of KSES were compared and analyzed to find out how weather changes. Energy load of Korea's standard houses was also analyzed based on this data. As a result, data corresponding to June ${\sim}$ September when cooling is supplied shows 23% of average increase with 30% of peak increase(June). On the other hand, data corresponding to November ${\sim}$ February when heating is supplied shows 29% of average decrease with 34% of peak decrease(November). Increase in cooling load and decrease in heating load in the above data comparison/analysis show that KSES 2009 data reflects increase in average temperature caused by global warming unlike the existing data. Increase in dry-bulb temperature depending on weather change of standard houses increases cooling load by 17% and decreases heating load by 36%