• Title/Summary/Keyword: Heating Unit

Search Result 497, Processing Time 0.037 seconds

Optimal Flow Control of Ceiling Type Indoor Unit by PIV Measurements (PIV 유동 계측을 통한 천장형 실내기의 최적 제어 설계)

  • Sung, Jae-Yong;An, Kwang-Hyup;Lee, Gi-Seop;Choi, Ho-Seon;Lee, In-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1042-1050
    • /
    • 2003
  • A heating flow discharged from a 4-way ceiling type indoor unit has been investigated to determine the design parameters for the optimal flow control. The flow was measured by a PIV(particle image velocimetry) system and an experimental model of 1/10 scale with a transparent room was devised by satisfying the Archimedes number. This similarity is generally used in cases where the forced convection has similar magnitude of the natural convection. To optimize the heating flow, several vane angles and vane control algorithms of cross and right angle controls were considered. Regarding the vane angle, experimental results show that 30$^{\circ}$is an optimal angle to avoid re-suction flows without significant increase in flow noise. Temperature distribution measured in the environmental chamber ensures the increased thermal comfort when compared to the case, 60$^{\circ}$angle. At the optimal angle, applying open/close control gives rise to more uniform distribution of the heating flow than without control. Especially, the cross-control seems to be satisfactory for thermal comfort.

Design of Optimal Vane Control for Ceiling Type Indoor Unit by PIV measurements (천장형 실내기의 기류 가시화를 통한 최적 제어 설계)

  • Sung Jaeyong;An Kwang Hyup;Lee Gi Seop;Choi Ho Seon;Park Seung-Chul;Lee In-Seop
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.533-536
    • /
    • 2002
  • A heating flow discharged from a 4-way ceiling type indoor unit has been investigated using a PIV(particle image velocimetry) system For the PIV measurements, an experimental model of 1/10 scale with a transparent room was devised by satisfying the Archimedes number, which is generally used in case that the forced convection has the similar magnitude as the natural convection. To optimize the heating flow, several vane angles and vane control algorithms of cross and right angle controls were considered. Regarding the vane angle, the experimental results show that it should be less than $30^{\circ}$ to avoid re-suction flows which decrease the performance of the air-conditioner. At the vane angle of $30^{\circ}$, applying open/close control gives nae to more uniform distribution of the heating flow than without control. Especially, the cross-control seems to be satisfactory for the thermal comfort.

  • PDF

A Study on the Heating Characteristics of Radiant Floor Panel Using Heat Pipes with the Double Wick (이중 윅 타입 히트파이프를 이용한 바닥복사패널의 난방특성 연구)

  • Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.183-189
    • /
    • 2012
  • Most of the domestic residential buildings have used the traditional radiant heating system, circulating hot water through the cross-linked polyethylene(PE-X) pipe buried in the floor panel of the heating space. New type of the heating panel was recently developed using heat pipes with double wicks. Some experiments were carried out in this study to verify the thermal characteristics of this heating system at the unit heating space which surrounded by outer space whose temperature of air be maintained scheduled value with time. Through the various experiments with several parameters, such as flow rate, inlet and outlet temperatures of hot water and the heating duration and so on, we found that the floor heating system with heat pipes was able to reduce the pumping power for hot water circulation by 4~31% compared with the conventional panel heating system using PE-X pipe. These results could be used for optimal design and efficient operation of the heating system as well as improvement of thermal comfort.

The Strengthening Effect of the Heating and Cooling Load on the Thermal Performance in the Housing Unit (주택에서의 단열성능 강화가 냉난방부하에 미치는 영향)

  • Lee, Jun-Gi;Kim, Sung-Hoon;Lee, Gab-Taek;Lee, Kyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.483-488
    • /
    • 2016
  • In this study, we chose the rural house as a standard model. In order to review the energy difference of cooling and heating loads, we changed the thermal transmittance standards. By using the thermal transmittance standard in 2011 as the Basic CASE, the thermal transmittance standard in 2013 as well as 2016, and the thermal transmittance standard of passive houses, we compared the results with regard to the cooling and heating energy load. Because of the heat loss, it can be confirmed that with an improved thermal performance of the building structure, the maximum increase of the cooling energy load was 36 kWh from June to September. Because of the heat loss, it was also confirmed that with the improved thermal performance of a building structure, the maximum decrease of the heating energy load is 1,498 kWh from November to April. Even though the heat loss of the building structure could decrease the cooling energy load by improving thermal transmittance standards in Korea, the energy saving performance is worse than the situation of heating energy load in heating period. Compared with CASE 1 and CASE 2, as well as CASE 1 and CASE 3, we CASE 3 was found to have the best energy saving rate when compared to the other cases : CASE 3 increased by 1,452 kWh and CASE 2 by 588 kWh, because the window thermal transmittance standard of 2016 was added.

Data Archive Project of 44-year Full Disk CaII K Images at Kyoto University

  • Kitai, Reizaburo;Uenoi, Satoru;Asai, Ayumi;Isobe, Hiroaki;Hayashi, Hiroo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.90.2-90.2
    • /
    • 2011
  • At Kyoto University, a continuous solar full-disk observation in CaII K line had been done during 44 years of 1926 - 1969. The observation was done with a Askania spectroheliograph on daily base. The images were taken on photographic plates. We started a project to archive these image data into a digital database which will be open to the public for scientific researches. One of the scientific usage of the database is to study the long term variation of the solar chromospheres. Since the area of CaII K plage area is a measure of solar chromospheric heating, we can do comparative study of the sunspot cycle and the chromospheric heating cycle of the sun. Another interesting field of scientific utilization of the database is the long term variation of the heating of terrestrial upper atmosphere. As was shown by Yokoyama, Masuda and Sato (2005), the area of the CaII K plage is a good proxy measure of solar EUV irradiation onto the upper atmosphere of the earth. Thus the completion of our database will serve to supply a basic and long-span data for upper atmospheric heating issues by the cooperative study with the Inter-university Upper atmosphere Global Observation NETwork (IUGONET) developed in Japan.

  • PDF

The Production of High Functional Hot Mat with Sleeping Type (고기능성 침낭형 온수매트 제작)

  • Lee, Sang-Heon;Kang, Jung-Uk;Won, Woo-Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.400-402
    • /
    • 2015
  • The typical winter heating unit heating mat. The product is to be found in the development of new water heating mat today. The product that circulates the water through the hose inside the mat with your existing heating mat electric heated mat is different from boiling water. However, no clear standards for noise and safety, consumer choice is giving confusing information about the product is low. We were to develop a high heat retention and stability than conventional sleeping mats to produce creative than traditional hot mats, heated mats general comparison with experimental results is a more efficient heat retention mat is produced.

Heating Performance and Energy Consumption Characteristics with Control Strategies for Central Heating System (중앙난방시스템의 제어방법에 따른 난방성능 및 에너지소모량 특성 연구)

  • Song, Jae-Yeob;Yang, Wan-Youn;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.38-44
    • /
    • 2011
  • In this study, heating performance and energy consumption characteristics with control strategies for central heating system were researched by the simulation. The simulation analysis is made by TRNSYS ver. 15 with the actual data. The parametric study on proportional factor, control time interval and outdoor air temperatures changes were done to compare control characteristics and energy performance, respectively. As a result, the simulation results with various parameter changes show good heating performance and energy saving.

Method and Analysis of Dynamic Simulation for Ondol Heating (온돌 난방에 대한 동적 시뮬레이션 및 분석)

  • Hong, Hi-Ki;Kim, Si-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.375-382
    • /
    • 2010
  • Ondol heating, a kind of radiant floor heating, is a main method used in housing units in Korea. Building energy simulation including ondol and relevant facilities has not been performed due to its complexity. For evaluating energy consumption and indoor temperature variation, a new method should be proposed. At the present work, a dynamic simulation on ondol heating was tried by combining TRNSYS and EES. Characteristic functions for a pump, hot water coils and a gas boiler were simultaneously solved by EES, and calculated flow rates and supply temperature of hot water were provided as inputs of the active layer of TYPE 56 in TRNSYS. The results by the simulation on a typical housing unit in Korea shows a good trend in a viewpoint of actual behavior of ondol heating.

Analysis on Heating Effects of the Vertical Type Geothermal Heat Pump System

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: This paper is aimed at analyzing the heating performance of the vertical closed loop type Geothermal Heat Pump System (GHPS) distributing the farm site and providing basic data of the GHPS. Method: Seedling greenhouse heating was made from October 2012 to May 2013. The seedling greenhouse was divided into 4 sectors (A, B, C and D zone, total $3,300m^2$) with different temperatures. It was heated from 5PM to 8AM, and during the night the greenhouse was covered by non-woven fabric thermal curtains along the upper 2m of the greenhouse for temperature maintenance. In order to analyze the heating performance of the GHPS, power consumption and operating time of the GHPS, inlet and outlet water temperature of the condenser, temperatures of each zone of the greenhouse, and ambient temperature were measured. Results: When operating only one heat pump unit, heat generated in the condenser decreased as the experiment progressed and power consumption increased correspondingly. However, the heating coefficient of performance decreased from 3.3 to 2.0 rapidly. Also, when operating two heat pump units, heat generated in the condenser decreased and power consumption increased. Heating coefficient of performance decreased from 4.5 to 3.7 rapidly. When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and minimum ambient temperature was $-20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. Conclusion: When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and the minimum ambient temperature was $20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. When operating only one heat pump unit, the heating COP was 2.0~3.3, and when operating 2 heat pump units, it was 3.7~4.5. If several heat pumps are installed in one GHPS, it is suggested that all heat pumps be operated except in special cases. Because the scale of the water pumps are set to the scale of when all heat pump units are operating, if even one unit is not operating, the power consumption will increase. That becomes the cause of COP decrease.

Development of a Torrefaction Unit for Food and Agricultural Wastes (음식물·농업폐기물 열분해장치 개발)

  • Song, Dae-Bin;Lim, Ki-Hyeon;Jung, Dae-Hong
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.73-79
    • /
    • 2018
  • In this study, a torrefaction unit with a capacity of 50 kg/hr was developed and experimented to produce of solid fuel by reuse of the food and agricultural wastes. Dried food wastes and agricultural wastes were used for the experiments and the heated-air torrefaction characteristics were investigated by the raw materials, torrefaction air temperature, and torrefaction time. For the dried agricultural wastes, measured torrefaction capacity and lower heating values were 55.35 kg/hr and 3,333 kcal/kg, respectively. As the lower heating values of the treated samples were greater, by around 7.8%, than those of the non-treated samples, torrefaction process was a very effective method to increase the heating value of the agricultural waste. In case of the dried food waste, torrefaction capacity and lower heating value was measured 88.27 kg/hr and 4,016 kcal/kg, respectively. As the lower heating value of treated ones showed around 9.0% higher than that of non treated ones, torrefaction process is very effective method to increase the heating value of the agricultural waste also. It will be assumed that the heating value shows more higher as increase the air temperature and decrease the moisture content of torrified matter.