• Title/Summary/Keyword: Heating Speed

Search Result 452, Processing Time 0.026 seconds

Development of Lightweight Moving Table for Linear Motor using Composite Materials (복합소재를 사용한 직선모터용 경량이송테이블 개발)

  • Hwang, Young-Kug;Eun, In-Ung;Lee, Choon-Man;Seo, Yong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • Linear motors are efficient mechanism that offers high speed and positioning accuracy. By eliminating mechanical transmission mechanisms, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. Therefore, it is necessary to design moving table with high stiffness, high efficiency and light weight construction. This paper presents the development of moving table using composite material. In order to develop light weight construction of moving table, finite element analysis is performed to find best moving table construction and composite stacking sequence. NASTRAN and MINITAB were used as the optimizer. A prototype for the moving table using composite material was created.

Performances of Hot Gas Bypass Type Oil Cooler System (Hot Gas를 이용한 오일쿨러의 성능평가)

  • Lee, Seung-Woo;Yeom, Han-Kil;Park, Kil-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.73-80
    • /
    • 2009
  • In accordance with the trend for high-speed multi-axes, and the increasing technical sophistication of machine tools, thermal deformation has become an important factor in the accuracy of machine tools. It was analyzed that thermal deformation error accounts for about 70% of all errors made with machine tools. For precise temperature control, both cooling and heating should be implemented. A hot gas bypass type cooling cycle method has a simplified structure and temperature control accuracy to with in ${\pm}0.1^{\circ}C$. In this study, the performances of oil cooler system, including temperature controllability according to hot gas floe and preset temperature sustainability according to temperature load, were tested. It is expected that this study will contribute to the development and performances of oil cooler system, which could minimize thermal errors and improve the quality of precision machine tools.

A Study on the Prediction of Shrinkage and Residual Stress for the HY-100 Weldment Considering the Phase Transformation (상 변태를 고려한 HY-100강 용접부의 수축 및 잔류응력 예측에 관한 연구)

  • Lee, Hee-Tae;Shin, Sang-Beom
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 2007
  • For high performance and structural stability, application of high strength steel has continuously increased. However, the change of the base metal gives rise to problems with the accuracy management of the welded structure. It is attributed to the martensite phase transformation of the high strength low alloy steel weldment. The purpose of this study is to establish the predictive equation of transverse shrinkage and residual stress for the HY-100 weldment. In order to do it, high speed quenching dilatometer tests were performed to define a coefficient of thermal expansion(CTE) at the heating and cooling stage of HY-100 with various cooling rates. Uncoupled thermal-mechanical finite element(FE) models with CTE were proposed to evaluate the effect of the martensite phase transformation on transverse shrinkage and residual stresses at the weldment. FEA results were verified by comparing with experimental results. Based on the results of extensive FEA and experiments, the predictive equation of transverse shrinkage and longitudinal shrinkage force at the HY-100 weldment were formulated as the function of welding heat input/in-plane rigidity and welding heat input respectively.

A Study on Remaining Efficiency of Thermal Straightening after Block Lifting

  • Ha, Yunsok;Yi, Myungsu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.148-156
    • /
    • 2015
  • Deck plates of ships or offshore structures would make out-of-plane distortion for their thin thickness. These distortions are usually straightened by thermal straightening such as flame heating method. After thermal straightening, the blocks are lifted and moved by cranes to assemble it at dry-dock stage. After this lifting process, out-of-plane deformation again happens frequently. And then, they continuously cause quality and accuracy problems in the final dry-dock process. So, it takes more time for repair and correction working. According to preceding research, the lifting process by cranes would offset the effect on thermal straightening. The target of this study is to develop a methodology analyzing the remaining efficiency of thermal straightening after block lifting. The development was based on the assumption of yield state at straightening region. Therefore the remaining efficiency was obtained by different stiffness slope while lifting & relieving. The efficiency formula was designed using inherent strain, and we made a table of zero-efficiency by cooling speed and class rule's steels. As a result, if the stress orthogonal to straightened line is calculated during lifting analysis by FEA, the efficiency can be obtained linearly to the values in the table. Finally, even optimized carling position can be designed by considering the regional data from series project and welding region on deck.

Comparison of effects of spark timing and fuel ratio on engine efficiency and $NO_x$ emission for fuel of city gas and syngas($H_2$ and CO) (도시가스와 혼합가스($H_2$, CO) 적용 시 점화시기 및 공연비에 따른 발전효율 및 질소산화물 배출량 비교)

  • Jeong, Chul-Young;Lee, Kyung-Teak;Song, Soon-Ho;Chun, Kwang-Min;Nam, Sang-Ick
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.817-820
    • /
    • 2009
  • Research on usage of syngas produced by waste gasification is on going all around the world. Syngas which consists of $H_2$, CO, $CO_2$, $N_2$, has different combustion characteristics from current city gas; due to distinct flame propagation speed of the fuel, syngas has different spark timing and air fuel ratio at maximum generating efficiency. This is why finding both the optimum point of spark timing and air fuel ratio is so important in order to improve thermo efficiency and secure stable running of gas generated by relatively low heating value syngas. Moreover, since emission of $NO_x$ is strictly regulated, it is important to operate lean burn condition that reduces NOx emission.

  • PDF

Impacts of anthropogenic heating on urban boundary layer in the Gyeong-In region (인공열이 도시경계층에 미치는 영향 - 경인지역을 중심으로 -)

  • Koo, Hae-Jung;Ryu, Young-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.665-681
    • /
    • 2012
  • This study investigates the influence of anthropogenic heat (AH) release on urban boundary layer in the Gyeong-In region using the Weather Research and Forecasting model that includes the Seoul National University Urban Canopy Model (SNUUCM). The gridded AH emission data, which is estimated in the Gyeong-In region in 2002 based on the energy consumption statistics data, are implemented into the SNUUCM. The simulated air temperature and wind speed show good agreement with the observed ones particularly in terms of phase for 11 urban sites, but they are overestimated in the nighttime. It is found that the influence of AH release on air temperature is larger in the nighttime than in the daytime even though the AH intensity is larger in the daytime. As compared with the results with AH release and without AH release, the contribution of AH release on urban heat island intensity is large in the nighttime and in the morning. As the AH intensity increases, the water vapor mixing ratio decreases in the daytime but increases in the nighttime. The atmospheric boundary layer height increases greatly in the morning (0800 - 1100 LST) and midnight (0000 LST). These results indicate that AH release can have an impact on weather and air quality in urban areas.

Development of Plasma Assisted Burner for Regeneration of Diesel Particulate Filter (매연여과장치 재생을 위한 플라즈마 응용 버너 개발)

  • Cha, Min-Suk;Lee, Dae-Hoon;Kim, Kwan-Tae;Lee, Jae-Ok;Song, Young-Hoon;Kim, Seock-Joon
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.8-13
    • /
    • 2007
  • Plasma assisted combustion is an old subject for the combustion society, but recently, the subject is refocused partly because techniques for non-thermal plasmas are progressed significantly, and partly because there are lots of applications which need to be overcome by a new reaction technology. In the present study, we have developed plasma assisted burner (plasma burner), which can be used as a heating source in a diesel particulate filter system. The burner can burn 20-60 cc/min of diesel fuel with 50 lpm of fresh air in an exhaust pipe of 2.0 liter diesel engine. Using 20 cc/min of diesel fuel, an exhaust temperature for 2.0 liter diesel engine can be raised up to around $600^{\circ}C$ for a wide range of engine speed (idle-3,000 rpm). The characteristics of the plasma burner are reported, and the possible operating mechanism of it will be discussed based on the effects of an electric field and a plasma on flames.

  • PDF

Spatiotemporal variations and source apportionment of NOx, SO2, and O3 emissions around heavily industrial locality

  • Al-Harbi, Meshari;Al-majed, Abdulrahman;Abahussain, Asma
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.147-162
    • /
    • 2020
  • The main objective of this study is to estimate the levels of pollution to which the community is presently exposed and to model the regimes of local air quality. Diurnal, daily, and monthly variations of NO, NO2, SO2, and O3 were thoroughly investigated in three areas; namely, residential, industrial, and terminal in Ras Al-Khafji. There is obvious diurnal variation in the concentration of these pollutants that clearly follows the diurnal variation of atmospheric temperature and main anthropogenic and industrial activities. Correlation analysis showed that meteorological conditions play a vital role in shaping the pattern and transportation of air pollutants and photochemical processes affecting O3 formation and destruction. Bivariate polar plots, an effective graphical tool that utilizes air pollutant concentrations' dependence on wind speed and wind direction, were used to identify prevailing emission sources. Non-buoyant ground-level sources like domestic heating and street transport emissions, various industrial stacks, and airport-related activities were considered dominant emission sources in observatory sites. This study offers valuable and detailed information on the status of air quality, which has considerable, quantifiable, and important public health benefits.

Laser Micro Soldering and Soldering Factors (레이저 마이크로 솔더링과 솔더링 인자)

  • Hwang, Seung Jun;Hwang, Sung Vin;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • In this paper, the principles, characteristics and recent studies of the laser micro soldering are reviewed. The factors which influence laser micro welding and soldering are also included. Laser soldering is a non-contact process that transfers energy to solder joint by a precisely controlled laser beam. In recent electronics industry, the demands for laser soldering are increasing due to bonding for complex circuits and local heating in micro-joint. In laser soldering, there are several important factors like laser absorption, laser power, laser scanning speed, and etc, which affect laser solderability. The laser absorption ratio depends on materials, and each material has different absorption or reflectivity for the laser beam, which requires fine adjustment of the laser beam. Laser types and operating conditions are also important factors for laser soldering performance, and these are also reviewed.

A Study on the Development of Rotary Ultrasonic Machining Spindle (회전 초음파가공 주축 개발에 관한 연구)

  • Li, Chang-Ping;Kim, Min-Yeop;Park, Jong-Kweon;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.160-166
    • /
    • 2015
  • Ultrasonic machining (USM) has been considered a new, cutting-edge technology that presents no heating or electrochemical effects, with low surface damage and small residual stresses on brittle workpieces. However, nowadays, many researchers are paying careful attention to the disadvantages of USM, such as low productivity and tool wear. On the other hand, in this study, a high-performance rotary ultrasonic drilling (RUD) spindle is designed and assembled. In this system, the core technology is the design of an ultrasonic vibration horn for the spindle using finite element analysis (FEA). The maximum spindle speed of RUM is 9,600 rpm, and the highest harmonic displacement is $5.4{\mu}m$ noted at the frequency of 40 kHz. Through various drilling experiments on glass workpieces using a CVD diamond-coated drill, the cutting force and cracking of the hole entrance and exit side in the glass have been greatly reduced by this system.