• Title/Summary/Keyword: Heating Speed

Search Result 452, Processing Time 0.022 seconds

Fabricating Apparatus of Rheological Material for forging by Rotational Barrel (회전식 바렐에 의한 단조용 레오로지 소재 제조)

  • Kim T.W.;Seo P.K.;Oh S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.645-648
    • /
    • 2005
  • The rotational barrel type equipment has been designed for the new rheology fabrication process. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed and rotation time of barrel. The barrel surface can be controlled the temperature by the induction heating and cooling system. Many experiments were widely examined by using this system with controlling the rotation speed and the rotation time. The possibility for the rheoforming process was investigated with microstructural characteristics.

  • PDF

Comparison of Efficiency of Flash Memory Device Structure in Electro-Thermal Erasing Configuration (플래시메모리소자의 구조에 대한 열적 데이터 삭제 효율성 비교)

  • Kim, You-Jeong;Lee, Seung-Eun;Lee, Khwang-Sun;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.452-458
    • /
    • 2022
  • The electro-thermal erasing (ETE) configuration utilizes Joule heating intentionally generated at word-line (WL). The elevated temperature by heat physically removes stored electrons permanently within a very short time. Though the ETE configuration is a promising next generation NAND flash memory candidate, a consideration of power efficiency and erasing speed with respect to device structure and its scaling has not yet been demonstrated. In this context, based on 3-dimensional (3-D) thermal simulations, this paper discusses the impact of device structure and scaling on ETE efficiency. The results are used to produce guidelines for ETEs that will have lower power consumption and faster speed.

Effect of Stabilization Conditions on the Microstructure and Electrochemical Properties of Melt-blown Graphite Fibers Prepared from NMP (NMP로부터 제조된 Melt-blown흑연섬유의 안정화조건에 따른 미세구조와 전기화학적 특성)

  • Kim Chan;Yang Kap Seung;Ko Jang Myoun;Park Sang Hee;Park Ho Chul;Kim Young-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.104-108
    • /
    • 2001
  • Naphthalene derived mesophase pitch WP) was spun into short fibers by using melt-blown technology. The pitch fibers oxidative stabilization were carried out heating rates of $2^{\circ}C/min,\;5^{\circ}C/min\;and\; 10^{\circ}/min$. The heating rate was a key factor to maximate the capacity of the Li-ion secondary battery through controlling the morphology of the graphitized fiber. The diameters of the melt-blown fibers prepared were in the range of $4{\mu}m\~16{\mu}m$ with functions of air jet speed, air temperature and the temperature of the nozzle. The graphitized fibers of $10{\mu}m$ diameters showed various morphological structure with heating rate of the stabilization. Radial, radial-random and skin-core cross-sectional structure of the fibers were observed at the respective heating rate of $2^{\circ}C/min\;5^{\circ}C/min\;and\;10^{\circ}C/min$. Most crystalline structure of graphite was obtained from the fiber stabilized at heating rate of $10^{\circ}C/min$ exhibiting the best anode performance with 400 mAh/g of capacitance and $96.8\%$ of charge/discharge efficiency.

A Study of the Non-Fourier Heat Conduction Phenomena (비푸리에 열전도 현상에 관한 고찰)

  • Choi, Soon-Ho;Jin, Chang-Fu;Choi, Hyun-Kue;Yun, Seok-Hoon;Kim, Myoung-Hwan;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.37-38
    • /
    • 2005
  • Although the law of classical fourier heat conduction predicts the heat conduction phenomena occurred in most engineering fields with a good accuracy, it is also well-known that the conventional fourier law of a heat conduction has an application limit when the heating and cooling are periodic for a short duration or when the heat conduction is analyzed in the extremely low temperature region. This application limit of classical fourier law results from the fact that it assumed the infinite speed of a heat wave. In this study, we investigated the feasibility of whether the molecular dynamics could be used to calculate the speed of a heat wave through a solid. The calculated sound velocity showed a good agrement with the theoretical prediction qualitatively. From the calculated results, we confirmed that the same methodology can be applied the evaluation of the speed of a heat wave.

  • PDF

Study on Structure Design of High-Stiffness for 5 - Axis Machining Center (5축 공작기계의 고강성 구조설계에 관한 연구)

  • Hong, Jong-Pil;Gong, Byeong-Chae;Choi, Sung-Dae;Choi, Hyun-Jin;Lee, Dal-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.7-12
    • /
    • 2011
  • This study covers the optimum design of the 5-axis machine tool. In addition, the intelligent control secures structural stability through the optimum design of the structure of the 5-axis machine center, main spindle, and the tilting index table. The big requirement, like above, ultimately leads to speed-up operation. And this is inevitable to understand the vibration phenomenon and its related mechanical phenomenon in terms of productivity and its accuracy. In general, the productivity is correlated with the operation speed and it has become bigger by its vibration scale and the operation speed so far. Vibration phenomenon and its heat-transformation of the machine is naturally occurred during the operation. If these entire machinery phenomenons are interpreted through the constructive understanding and the interpretation of the naturally produced vibration and heat-transformation, it would be very useful to improve the rapidity and its stability of the machine operation indeed. In this dissertation, the problems of structure through heating, stability, dynamic aspect and safety about intelligent 5-wheel machine tool are discovered to examine. All these discoveries are applied to the structure in order to enhance the density of it. It aims to improve the stability.

A Study on the Surface Hardening of SCM4 Steel Using a Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 SCM4강의 표면경화에 관한 연구)

  • Na, Gi-Dae;Shin, Byung-Heon;Shin, Ho-Jun;Yoo, Young-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.24-32
    • /
    • 2007
  • Laser surface hardening is beneficially used for surface treatment of structural steel. Due to very rapid heating and cooling rates, structural low-alloy steel(SCM4) can be hardened as self quenching. The aim of this research project is to improve the influence of the process laser parameters: laser power, spot size, surface roughness, and traverse speed. The laser beam is allowed to scan on the surface of the workpiece at the constant power(1095W), varying the traverse speed at 0.3m/min, 0.5m/min and 0.8m/min. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with uniform hardness. From the results of the experiment, it has been shown that the stable hardness is about 600$\sim$700Hv, when the laser power, focal position and the traverse speed are P=1095W, z=0mm and v=0.3m/min.

A Study on Characteristics of Overhead Rigid Conductor System for Developing the High-speed System up to 250km/h (250km/h급 강체전차선로 시스템 개발을 위한 R-BAR 특성 고찰)

  • Bae, Sang-Joon;Jang, Kwang-Dong;Lee, Ki-Won;Park, Youn-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.492-497
    • /
    • 2015
  • An overhead rigid conductor system is mainly applied to the subway and recently studies on the rigid system have been conducted for applications such as tunnels of high-speed line and speed improvement of a conventional lines up to 250km/h. Power feeding performance which is the most important in a rigid system can be measured by contact force and characteristics of this contact force are related to the shape and material of the R-BAR. In this paper, we analyze the measurements of contact force, current heating temperature, impedance of a rigid conductor which was developed in Korea, after that we compare static characteristics of home and abroad rigid conductors which have various shapes and materials.

Effect of Operating Conditions of a Fan-Coil Unit with an Oval Tube Type Heat Exchanger on Non-Dimensional Performance Coefficient (타원관 열교환기를 적용한 팬코일 유닛의 운전 조건이 무차원 성능계수에 미치는 영향)

  • Yoon, Jaedong;Lee, Younghoon;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effect of operating conditions of fan-coil unit with an oval tube type heat exchanger on its non-dimensional performance coefficient has been investigated. Pressure drops and heat transfer rates were measured under heating condition for various water flow rates, inlet temperatures and wind speeds. As a non-dimensional performance coefficient, Colburn j-factor was evaluated. The results show that the most sensitive parameter on heat flux is the inlet temperature, which affects the heat flux 4.7 and 7.2 times more than the wind speed and water flow rate, respectively. On the other hand, the Colburn j-factor as a non-dimensionalized index decreases with the wind speed, and has an maximum when the wind speed is about 1 m/s. the Colburn j-factor increases slowly with the water flow rate and inlet temperature but at a certain range of inlet temperature, the opposite phenomenon is found.

On the Derivation of Material Constants Associated with Dynamic Behavior of Heat Formed Plates (열성형 판 부재의 동적거동에 관련된 재료상수 산출에 관한 연구)

  • Lee, Joo-Sung;Lim, Hyung-Kyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.105-114
    • /
    • 2016
  • When impact load is applied to a plate structure, a common phenomenon that occurs in structures is plastic deformation accompanied by a large strain and eventually it will experience a fracture accordingly. In this study, for the rational design against accidental limit state, the plastic material constants of steel plate which is formed by line heating and by cold bending procedure have been defined through the numerical simulation for the high speed tension test. The usefulness of the material constants included in Cowper-Symonds model and Johnson-Cook model with the assumption that strain rate can be neglected when strain rate is less than the intermediate speed is verified through comparing the present numerical results with those in references. This paper ends with describing the future study.

Harmonic Analysis of Power Conversion System for Torque and Speed Changing of Electric Propulsion Ship (전기추진선박의 토크 및 속도변화에 따른 전력변환장치의 고조파 분석)

  • Kim, Jong-Su;Kim, Seong-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • There are various environmental conditions under which ship may navigate over ocean or in harbor. Ship's torque and speed change frequently under the voyage conditions. In this case, harmonics is created in the electrical power systems. The major adverse impacts of voltage and current harmonics in the electrical power systems on generator, transformer, converter, inverter and propulsion motor lead to the increase of machine heating caused by iron and copper losses which are dependent on frequency. In this paper, an analysis of THD(total harmonic distortion) for currents and voltages in the propulsion equipment was carried out. The THD and torque ripple in the input currents of the propulsion motor have been confirmed by the simulation results.