• 제목/요약/키워드: Heating Speed

검색결과 452건 처리시간 0.031초

가변속 열펌프의 냉매 유량제어에 의한 난방성능 변화에 관한 실험적 연구 (An Experimental Investigation on the Variation of Heating Performance Due to the Refrigerant Flow Control in a Variable-Speed Heat Pump)

  • 김봉훈
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.746-756
    • /
    • 2001
  • An experimental study was conducted to investigated the effect of refrigerant flow control on the performance of a variable-speed heat pump operating in both cooling and heating mode. For this purpose, cooling and heating capacity, EER and refrigerant mass flow rate corresponding to an electronic valve as well as a capillary tube were measured as functions of compressor speed, length of capillary tube (or valve opening of the electronic valve), refrigerant charge, and outdoor temperature. From the comparison of experimental results, it was found that the performance variation due to the electronic valve opening became significant as the operating conditions(outdoor temperature and compressor speed) deviated from the standard condition at which heating capacity and EER were rated for the indicated capillary tube.

  • PDF

유도가열 및 근적외선 가열방법에 의한 표면처리 강판 도포층의 가열 및 건조 특성 (Heating & Drying Characteristics of Coating Layer by Induction Heating and Short-wave Infrared Heating)

  • 김태수;양재원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.249-257
    • /
    • 2004
  • Drying and curing characteristics of PCM resins using the induction heater and short-wave infrared emitter module was studied to develop a compact oven system for the high speed CCL and post-treatment equipment. Drying of the polyester resins using the induction heater and infrared heater showed that the blistering tendency of polyester resin coating increased regardless of additives and colors of resins as the heating rate and/or dry film thickness increased. The blistering of polyester resin coating layer occurred when the heating speed was over than $25^{\circ}C/sec$ for the dry film thickness of $19\~20um$, which is the typical thickness of finish coating in CCL. So did it when the heating speed was over than $40^{\circ}C/sec$ for the dry film thickness over than 10 um. The heating efficiency of paint coated steels by the infrared heating was strongly dependent on the colors of paint coating and generally increased for the dark surface and/or coating. But the faster drying of the PCM resin coatings increased the blistering tendency of coating layer. The blistering limit for the typical finish coating by the infrared heating was estimated as the heating rate slower than $20^{\circ}C/sec$ regardless of colors of PCM resins.

  • PDF

극저온에서 풍속의 영향에 따른 발열기자재의 최적설계 (Optimum Design of the Heating Equipment by Influence of Wind Speed at Cryogenic Temperature)

  • 조현준;윤원영
    • 품질경영학회지
    • /
    • 제48권3호
    • /
    • pp.463-479
    • /
    • 2020
  • Purpose: The purpose of this study is to evaluate the performance of heating equipments by implementing the extreme environment in which ships navigating the ice zone are exposed and to study and apply the experimental method to infer the optimized design for each factors. Methods: It is required to verify by analysis and experiment how the environment with low temperature and wind speed implemented through the test facility affects the heating walk-way and The optimum design of the heating walk-way in that extreme environment is derived using the Taguchi technique. Results: The results of this study are as follows; It was found the effect on the condition of each factor and derive optimized conditions that satisfy the performance condition of the heating walk-way in extreme use environment. Conclusion: Ships operating in Polar waters require reliable and durable facilities for all environments during sailing.

가열탱크 내부 스크류 회전속도에 따른 전기보일러의 열성능에 관한 연구 (Study on Thermal Performance of the Electric Boiler according to Screw Rotation Speed in Heating Tank)

  • 금종수;김동규;박종일
    • 한국지열·수열에너지학회논문집
    • /
    • 제11권3호
    • /
    • pp.13-19
    • /
    • 2015
  • This study was aimed at the heating tank with a screw-rotation device for improving the thermal efficiency of electric boiler. In the proposed system, analysis items were the heater rod surface temperature variation, reaching time for set temperature and thermal efficiency. The following conclusions are obtained from this experimental study. (1) When screw speed increases, the time reaching for set temperature tended to be shorter. (2) When the rotation speed becomes 300 rpm, the surface temperature difference between the right and left heater rod decreases by 49%, from $19.7^{\circ}C$ to $9.7^{\circ}C$ in average. (3) When the rotation speed is over 250 rpm, proposed heating tank structure appeared to be effective in terms of thermal efficiency. Thermal efficiency with the rotation speed 300 rpm is improved by 3.8% compared to the case of rotation speed 0 rpm.

A study on the simulation of water cooling process for the prediction of plate deformation due to line heating

  • Nomoto, Toshiharu;Jang, Chang-Doo;Ha, Yun-Sok;Lee, Hae-Woo;Ko, Dae-Eun
    • International Journal of Ocean System Engineering
    • /
    • 제1권1호
    • /
    • pp.46-51
    • /
    • 2011
  • In a line heating process for hull forming, the phase of the steel transforms from austenite to martensite, bainite, ferrite, or pearlite depending on the actual speed of cooling following line heating. In order to simulate the water cooling process widely used in shipyards, a heat transfer analysis on the effects of impinging water jet, film boiling, and radiation was performed. From the above simulation it was possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision. Compared to the line heating experimental results, the simulated water cooling process method was verified to improve the predictability of the plate deformation due to line heating.

유로저항에따른 속도제어를 통한 Zone별 유량특성 연구 (A Study of Flow Characteristics through the Speed Control and Flow Resistance)

  • 오병길;김회서
    • 설비공학논문집
    • /
    • 제23권11호
    • /
    • pp.762-768
    • /
    • 2011
  • We use floor radiant heating system in the house of commons in winter Floor radiant heating system, which transfer heat by radiation, is one of the energy efficient and comfortable systems that. Floor radiant heating system is configured to be controlled by the room for energy-saving. Proper flow rate to a comfortable heating in the room is important. However, Using a constant speed circulation pump in separate rooms, heating system may cause an imbalance because of the difference of length of coil when operating in the rooms. In this study, our Research team examined heating imbalance due to the variation length through the coil length changes and flow control of the circulation pump.

주변 온도보상이 필요 없는 열선식 풍속 센서 시스템 (Hot Wire Wind Speed Sensor System Without Ambient Temperature Compensation)

  • 성준규;이근우;정회경
    • 한국정보통신학회논문지
    • /
    • 제23권10호
    • /
    • pp.1188-1194
    • /
    • 2019
  • 유체의 흐름을 측정하는 여러 방법 중 열선 풍속 센서는 유체의 열전달에 의해 속도나 온도를 측정하는 장치로 비정상 속도 및 난류 속도 성분을 측정하는데 유용하다. 하지만 열선 풍속 센서는 외부의 환경 요인에 민감하며, 주변 온도, 습도, 신호 잡음 등에 의해 정확도가 떨어지는 단점이 있다. 이런 단점을 보완하는 방법으로 온도 보상 회로를 추가하는 기술이 나오고 있지만 가격 경쟁력을 갖출 수 없는 상황이다. 이를 해결하기 위해 본 논문에서는 온도 보상이 필요 없는 풍속 감지 센서에 대해 연구를 진행하였다. 열선식 풍속 센서는 외부 환경 요인 중에서도 주변 온도에 매우 취약하다. 주변 온도로는 전자 회로에 의한 발열의 영향이 가장 크게 미치고 있으며, 이를 개선하는 방법으로 발열체에 보조 발열체를 추가로 장착하여 보조발열체와 발열체의 일정한 온도차를 제어하는 것이다. 이와 같이 기존 기술에 비해 복잡하지 않은 방법으로 동등한 성능을 확보할 수 있다는 것을 확인할 수 있었다.

인젝션형 가변속 스크롤 압축기를 적용한 히트펌프의 난방성능 특성에 관한 연구 (Heating Performance Characteristics of a Heat Pump with a Variable Speed Injection Scroll Compressor)

  • 고석빈;허재혁;조일용;김용찬
    • 설비공학논문집
    • /
    • 제24권5호
    • /
    • pp.377-384
    • /
    • 2012
  • Vapor injection technique has been applied to prevent performance degrdation of a heat pump at low ambient temperatures. In this study, the heating performance of a heat pump with a variable speed injection scroll compressor using R-410A was investigated by applying sub-cooler vapor injection(SCVI) and flash tank vapor injection(FTVI). The heating performance of the heat pump was measured by varying compressor frequency and outdoor temperature. The heating capacity of the FTVI system was 8~10% higher than that of the SCVI system at all operating conditions. On the other hand, the heating performance improvement with the increase in the compressor frequency was more prominent in the SCVI system than in the FTVI system.

운전조건에 따른 가변속 캐스케이드 열펌프의 성능 특성 연구 (Study on the Performance of a Variable Speed Cascade Heat Pump under Various Operating Conditions)

  • 정광무;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권2호
    • /
    • pp.1-7
    • /
    • 2013
  • Most researches done on heat pumps have been on heat pumps for refrigeration, cooling and heating. There is therefore the need for more research on hot water heat pumps, especially for high temperature. Even though the cascade heat pump cycle has a great potential more efficient hot water generation even at low evaporating temperatures, it has been researched least for this purpose. In this study, the heating performance of a variable speed cascade heat pump was investigated by varying operating conditions. For the same heating capacity values, it was found that increasing the low stage compressor speed was more suitable for enhancing the performance of the system to get a higher temperature.

Effects of Vertical Meteorological Changes on Heating and Cooling Loads of Super Tall Buildings

  • Song, Doosam;Kim, Yang Su
    • 국제초고층학회논문집
    • /
    • 제1권2호
    • /
    • pp.81-85
    • /
    • 2012
  • Vertical meteorological conditions encountered by super tall buildings, such as wind speed, temperature and humidity, vary due to their height. Therefore, it is necessary to consider these environmental changes to properly estimate the heating and cooling loads, and to minimize the energy demands for HVAC in super tall buildings. This paper aims to analyze how vertical meteorological changes affect heating and cooling loads of super tall buildings by using numerical simulation. A radiosonde, which observes atmospheric parameters of upper air such as wind speed, wind direction, temperature, relative humidity and pressure, was used to provide weather data for the building load simulation. A hypothetical super tall building was used for the simulation to provide quantified characteristics of the heating and cooling loads, comparing the lower, middle and upper parts of the building. The effect of weather data on the heating and cooling loads in super tall building was also discussed.