• Title/Summary/Keyword: Heating Pipe

Search Result 344, Processing Time 0.025 seconds

Study on the Development of Multi Heat Supply Control Algorithm in Apartment Building of District Heating Energy (지역난방 에너지 공동주택의 다중 열공급 제어 알고리즘 개발에 관한 해석적 연구)

  • Byun, J.K.;Choi, Y.D.;Park, M.H.;Shin, J.K.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.63-70
    • /
    • 2011
  • In the present study, we developed optimal heat supply algorithm which minimizes the heat loss through the distribution pipe line in group energy apartment. Heating load variation of group energy apartment building in accordance with outdoor air temperature was predicted by the correlation obtained from calorimeter measurements of whole households of apartment building. Supply water temperature and mass flow rate were conjugately controlled to minimize the heat loss rate through distribution pipe line. Group heating apartment located in Hwaseong city, Korea, which has 1,473 households divided in 4 regions, was selected as the object apartment for verifying the present heat supply control algorithm. Compared to the original heat supply system, 10.4% heat loss rate reduction can be accomplished by employing the present control algorithm.

Dynamic modeling of the hydraulic-thermal behavior of the buried pipe network for district heating (지역난방용 지중매설 배관망 네트워크 열-유체 동적 거동 모델링)

  • Lee, Jeongbin;Yi, Jun Young;Kim, Lae-Hyun;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.144-151
    • /
    • 2012
  • A district heating system produces thermal energy and supplies it to a large region. District heating systems can provide higher efficiencies and better pollution control than localized boilers. The heat generated by a district heating system is distributed to the customer via a network of insulated pipes. For the optimal operation of a district heating system, it is important to predict the distributions of pressure, flow rate and temperature of heating fluid within the network of pipes at various operating conditions. In this work, a mathematical modeling was performed to predict the dynamic hydraulic-thermal behaviors of heating fluid in the network of pipes for a district heating system. The mathematical model accounts for the conservations of mass, momentum and energy. In order to verify the validity of modeling, the modeling results were compared with the monitoring data of Gang-nam Branch of District Heating.

Shape Design of Bends in District Heating Pipe System by Taguchi Method (다구찌 방법을 이용한 지역난방시스템의 벤드형상 설계)

  • Choi, Moon-Deok;Kim, Joo-Yong;Ko, Hyun-Il;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.307-313
    • /
    • 2010
  • In this study, alternative designs for the bends used in district heating pipes are investigated. The district heating pipes, which are subjected to temperatures of 10 to $120^{\circ}C$ and a water pressure of $16\;kgf/cm^2$, have to withstand thermomechanical cyclic loads when in use. These pipes comprise three concentric tubes: a steel pipe (internal), polyurethane (PUR) insulator (middle), and a high-density polyethylene (HDPE) case (external). In addition, the bends in the district heating pipe system are covered with foam pads that cause aging. In this study, an alternative bend design that does not involve the use of a foam pad is proposed to overcome the aging problem in the bends. In the proposed design, "shear rings" are added to the surface of a bend, and its dimensions are determined by a combination of the statistical (Taguchi) method and FEM. The geometrical parameters such as thickness, height, and number of the rings significantly affect the design optimization, and hence, they affect the results of the FEM.

An automated control system for concrete temperature development in construction

  • Qiang, Sheng;Leng, Xue-jun;Wang, Xiang-rong;Zhang, Jing-tao;Hua, Xia
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.437-444
    • /
    • 2019
  • PLC and its expansion module, electric ball valve and cooling pipe, electric heating steel plate and various components of the system, which is used to control test and process data. By automatically adjusting the opening of the valve, the system makes the top temperature and cooling speed develop along the ideal temperature diachronic curve. Moreover, the system enables the temperature difference between inside and surface of test block limited in a given range by automatically controlling the surface board heating. The method of physical simulation test by sandbox with built-in cooling water pipe and heating rod is adopted. On the premise of a given standard value, the operation of the system is checked under different working conditions. Further, an extension of this system is proposed, which enables its application to obtain some thermal parameters when cooperating with numerical simulation.

Thermo-hydraulic Numerical Analysis for the Leakage of Buried District Heating Pipe (열수송관의 누수에 대한 열-수리적 수치해석)

  • Shin, Hosung;Hong, Seung-Seo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.17-26
    • /
    • 2022
  • Domestic district heating system needs safety management guidelines using the change of surface temperature to detect damages to buried heat pipes. This paper performed numerical analyses on the temperature change of ground surface due to the burial and leakage of heat pipes. Temperature difference between the ground surface above the buried heat pipes and the surrounding surface rises to a crescendo between 3 am and 8 am. It is more significant in winter rather than in summer. Low groundwater level magnifies the temperature increase of the ground surface by the heat pipe, which is smaller in the asphalt pavement than in the bare soil. Without leakage of the buried heat pipe, the temperature increment on the ground surface by the heat pipe is within 3.0℃ in the bare soil and 3.5℃ in the asphalt pavement. Leakage of the supply heat pipe in the bare soil increases the temperature on the ground surface gradually in the summer but rapidly in the winter. Asphalt pavement shows a lower increment and increasing rate of the temperature on the ground surface due to pipe leakage than bare soil surface. And leakage on both sides of the supply pipe takes 1-2 days for the temperature difference from the surrounding soil surface to reach 10℃.

Heating Efficiency of Difference Heat Collection Methods for Greenhouse (유리온실의 태양열 집열방법별 집열효과)

  • 최영하;이재한;권준국;박동금;이한철
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.166-170
    • /
    • 2000
  • Three methods for heat collection, which were the flat solar collector, two fan with radiator, and square pipe method, were studied to sue efficiently solar energy in the three different glasshouses for two years. The flat plate solar collector method was made use of the commercial solar collector with collection area of 24$m^2$, the method of two fans with radiators collected solar energy at the top of the glasshouse. An thermal storage tank was constructed underneath in teach glasshouses. When an area of 1,000$m^2$ was heated to the minimum temperature of 9$^{\circ}C$, the decrease rate of heating fuel for the flat plate solar collector, the fan attached radiator and the square pipe methods were 7%, 19% and 28% respectively. The flat plate solar collector method, which could be heated approximately 40-50$m^2$, was currently used by most of the farmer. Under the condition, the decrease rate of annual heating fuel was 14% which was not better for an economic annual heating fuel. If the fan with radiator method was operated, the use of installation and maintenance were required. So, it could not be good economic efficiency of solar heating. The heating efficiency of the square pipe method was relatively better thant those of the flat plate solar collector or the fan attached radiator. Since the cost of materials and its installation of the use of square pipe method was lower than any other method. However, corrosion of the pipe, greater shade in the greenhouse and strength against the square pipe were problems that should be overcome in the square pipe method.

  • PDF

The Study on Automatic Temperature Transmission System for the Heating pipe at Home (가정식난방배수관내의자동온도송신장치에대한연구)

  • Park, Chul-Min;Jo, Heung-Kuk;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2641-2646
    • /
    • 2009
  • The more growing on home automation system at automatic control, the more efficiency required for energy consumption and for recycling energy in near future. Heating is essential in general apartment. Heating method is two types in apartment. One uses electricity, and other one uses warm water. If use electricity, is not efficient by rise of electric charges. But, It can reduce much in expense aspect, if use warm water. When use warm water, temperature of warm water is not equal from all pipe parts. Therefore, indoor tempera can be unequal with set point. Solution of these problems is as following. Temperature sensor in warm water attach pipe. The measured temperature transmits by real time. Temperature of warm water controls in receiver side. In this paper, we propose an automatic temperature transmission system for the heating pipe at home, that is a low-power based, and supply the energy source from a small AC motor resided in bottom cement mortal. The proposed system is used in power mechanism from a collision process of water-jet using propeller water-difference and also designed a CPU module by Atmega8 at ATMEL co., Inc. and a communication module by CC1020 at Chipcon co., Inc.

Analysis on Pressure and Temperature wave of Self Oscillating Heat Pipe (자려 진동 히트파이프의 압력 및 온도 파형 해석)

  • Choi, J.H.;Yoon, D.H.;Oh, C.;Kim, M.H.;Yoon, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.43-49
    • /
    • 2000
  • Heat transfer characteristics of self oscillating heat pipe were experimentally investigated for the effect of fill charge ratios and heat loads. The heat pipe used for this study is made of copper capillary, has 0.002m internal diameter, a 0.34m length in one turn and consists of 19 turns. Heating and cooling section each have a length of 70mm. Water was used as working fluid inside heat pipe. As the experimental results, the self oscillating heat pipe was operated by self-exited oscillation and circulation of working fluid and the oscillation within the self oscillating heat pipe assumed chaotic behavior.

  • PDF

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery (저온 폐열 회수용 진동형 히트 파이프 열교환기의 성능 평가에 관한 연구)

  • 안영태;이욱현;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.368-376
    • /
    • 2001
  • Performance of heat exchanger was evaluated to heat exchanger using oscillating heat pipe for waste heat recovery of low temperature. Oscillating heat pipe used in this study was formed to the closed loop of serpentine shapes using copper tubes. Heat exchanger was formed to shell and tube type and composed of low finned tube. R-22 and R-141b were used to the working fluids of tube side and their charging ratio was 40%. And, water was used to the working fluid of shell side. As the experimental parameters, the inlet temperature difference of heating and cooling part of secondary fluid and the mass velocity of secondary fluid were used. The mass velocity of secondary fluid was changed from 90 kg/$m^2s\; to\;190 kg/m^2$s from the experimental results, heat recovery rate was linearly increased to the increment of the mass velocity of secondary fluid and the inlet temperature difference of secondary fluid. Finally, the performance of heat exchanger was evaluated by using $\varepsilon$-NTU method. It was found that NTU was about 1.5 when effectiveness was decided to 80%.

  • PDF