• Title/Summary/Keyword: Heating Pattern

Search Result 294, Processing Time 0.023 seconds

Improvement of Heating Pattern in RF Hyperthermia -Simultaneous Application of Dielectric Heating and Induction Heating-

  • Sakakibara, Norifumi;Ochiai, Makoto;Hayakawa, Yoshinori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.478-480
    • /
    • 2002
  • Heating by RF wave is divided into dielectric heating and induction heating. Dielectric heating and induction heating from outside the body have the compensatory heating pattern. While surface fat layer is heated by dielectric heating, it is not heated by induction heating. While the peripheral part at the middle of the electrodes is not heated by dielectric heating, it is heated by induction heating. By the simultaneous application both modalities, heating pattern seems to be more uniform and improved. Computer simulation of Finite Element Method (FEM) using ANSYS was conducted to dielectric heating with the results of above-mentioned feature. Theoretical considerations by the uniform RF magnetic field in a cylinder and textbooks support the feature of the above-mentioned heating pattern of induction heating. Further computer simulation of FEM using ANSYS will be conducted to simultaneous application of dielectric heating and induction heating to verify and will be reported.

  • PDF

Analysis on the Temperature Distribution for the Billet in a Furnace (가열로내 피열재의 온도분포 해석)

  • Kwon, O.B.;Kim, M.K.;Chang, K.Y.;Kwon, H.C.;Bae, D.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.24-30
    • /
    • 2004
  • In this paper, the optimal heating pattern of the furnace is sought to reduce the unnecessary energy loss. A finite difference method was used to estimate the transient temperature field of the billet in a furnace. Heat conduction equations were used in the interior nodes of the billet, while energy balances for conduction, convection, and radiation were considered in the boundary nodes. Several heating patterns for the furnace were tested and subsequently compared each other. The results showed that the temperature in the preheating zone should be set to relatively low. The temperature distributions of the billet are quite different from each other when different heating pattern are used, even though the heating patterns have the same amount of energy consumption. It reveals that there exists an optimal heating pattern to save the energy loss.

  • PDF

Effects of Stainless Steel Plate-Patterns on the Thermal Distortion and Surface Temperature of Aluminum Frypan (알루미늄 프라이팬에 부착된 스텐리스판의 패턴이 열 변형 및 표면온도에 미치는 영향)

  • Moon, Sungmo;Yoon, Myungsik
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.227-231
    • /
    • 2020
  • This article investigated the effects of stainless steel plate-patterns bonded to aluminum frypan on the thermal distortion and surface temperature of the frypan during gas or induction heating. Two different stainless steel plate-patterns were employed: type A contains only circular holes and type B has not only circular holes but also vacant spaces of 0.5 mm thick and 40 mm long straight line crossing 60 mm long curved line. The bottom of the frypan was distorted during heating when type A stainless steel plate-bonded frypan while no significant thermal distortion was observed for type B stainless steel plate-bonded frypan during heating. Temperature of the frypan surface showed the same trend during gas heating, irrespective of stainless steel plate-patterns. During induction heating, however, the frypan with type B stainless steel plate-pattern showed lower surface temperature than the frypan with type A stainless steel plate-pattern. It is concluded that Type B stainless steel plate-pattern with circular holes and vacant spaces of lines is very effective for minimizing a thermal distortion and lowering the surface temperature of an aluminum frypan during induction heating.

Thermal Degradation Pattern of Tocopherols on Heating without Oxygen in a Model Food System (모델식품계에서 무산소 가열시 토코페롤의 열분해 패턴)

  • 정혜영
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.635-639
    • /
    • 1998
  • The thermal degradation pattern of $\alpha$-, ${\gamma}$-and $\delta$-tocopherols in glycerol was investigated during heating at 100~25$0^{\circ}C$ for 5-60 min in the absence of oxyge. The tocopherols and thermally decomposed products were separated by HPLC with a reversed phase $\mu$-Bondapak C18-column. The degradation pattern of $\alpha$-tocopherol during the heating in the absence of oxygen was different from those of ${\gamma}$-and $\delta$-tocopherols. But the degradation patterns of ${\gamma}$-and $\delta$-tocopherols were similar to each other. The residual content of $\alpha$-tocopherol during the heating in the absence of oxygen decreased to the range 12~65% and those of ${\gamma}$-and $\delta$-tocopherols decreased to the range 4~96%. The thermal degradation of tocopherols in the absence of oxygen was less than that in the presence of oxygen.

  • PDF

Human Responses to Pattern Ease of Base Layer with Abdominal Heating Pads (복부 가열 패드를 부착한 상의 베이스 레이어의 여유량에 따른 인체 반응)

  • Lee, Gyeongmi;Hong, Kyunghi;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.4
    • /
    • pp.687-697
    • /
    • 2017
  • To figure out an appropriate pressure level for a body warming base layer, human responses were observed when the pattern reduction of base layers varied. Under the condition of $2^{\circ}C$, 60% RH, 0.1m/s, ten male subjects participated in the experiment with four sizes of experimental vests where heating pads were attached. The subjective evaluations of the heating vests with different sizes were reported using 7 or 9 point scales. We simultaneously observed chest, abdomen and scapula skin temperatures and microclimate humidity. It was found that the tight pattern as in the case of A or B provided a warmer subjective sensation and skin temperature than C or D; however, there were no differences in skin temperature at the chest. Eventually, the chest temperature decreased after about 30 mins of heating; however, temperature of abdomen increased and indicated that heating with two commercial pads used was inadequate for whole body warming. The pressure sensation of 'tight' was improved after warming the abdomen in a cold environment. Overall, the gaps beyond the original circumference of the abdomen, as in C or D, were not desirable for the local heating of abdomen under the conditions of this experiment where walking was included in the protocol. The experiment garment B with nude waist circumference was the best, and D with the largest ease, was the worst for a comfortable warming vest.

Reheating of Semi-Solid Material Using Multi-Capacity Induction Heating System (다출력 유도 가열 시스템에 의한 반용융 소재의 재가열)

  • 정홍규
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.199-202
    • /
    • 1999
  • Many processing times for fabricating complex shaped parts by near net shape process such as thixoforming or semi-solid forming, are required due to the time for die design, induction heating and forming process. Therefore, for the thixoforming process, multi-capacity induction heating process is very important due to the reduction of the processing time and cost. It is indispensable to adopt a power-time heating pattern which manages to conciliate complete eutectic melting at the core with limited overheating at the periphery. The total reheating time is thus dependent on billet diameter; in inches$(pm20%)$. Typically, high frequency is used for the rapid reheating of the billet to the eutectic temperature range and low frequency for the remelting of the desired fraction of liquid and for the radial homogeneization of the liquid fraction. So in this study, the multi-capacity induction heating conditions of ALTHIX 86s alloy to reduce the processing time and cost would be proposed. The suitability of multi-capacity induction heating conditions would be verified through the comparison to Garat's data.

  • PDF

Effects of the mold surface heating methods for the DVD stamper with nano pattern on the transcription of the injection molded parts using COC and PMMA plastics (나노패턴을 갖는 DVD용 스템퍼의 표면가열방식이 COC, PMMA 수지를 이용한 사출성형품의 전사성에 미치는 영향)

  • 김동학;유홍진;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.218-222
    • /
    • 2004
  • We developed the stamper structured mold with moving core type with nano pattern. Among the factors affecting the quality of injection molding plastic parts, We studied the effects of moving core surface heating method on the transcription of injection molding plastic parts with nano structures. Moving core surface heating has been tested by three different methods. The first was conventional injection molding process without heating moving core surface, the second was halogen lamp radiation heating process and the last was MmSH process using gas flame. As a result of making injection molded parts by using thermoplastic amorphous resins such as COC, PMMA, MmSH method which is the most high temperature of moving core surface showed the best nano pattern transcription of the three methods, but the outcome of conventional injection molding process was not better than others.

  • PDF

Characteristics of Temperature Control in the Inverter Type Oil Coolers (인버터 타입 오일냉각기의 온도제어 특성에 관한 연구)

  • 이상호;이찬홍;박천홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.233-236
    • /
    • 2003
  • In this Paper, the temperature control error and cooling characteristics of inverter typ coolers are evaluated to predict application validity of coolers under heating pattern and amount The temperature control error of coolers small in 15~70% range of the max. cooling ability. At less than 15% of max. cooling ability has the inverter type cooler a basic temperature control error $\pm0.5^{\circ}C$ and acts as on/off type coolers. The inverter type cooler is unsuitable for precision temperature control under the complex heating pattern. But PID control of cooler including the heating system is an alternative for the case.

  • PDF

Surface Heating Method Using Hot Jet Impingement for Improving Transcription of Nano-Pattern (나노 패턴의 전사성 향상을 위한 고온 기체 분사를 이용한 금형 표면의 가열 기법)

  • Kim, K.H.;Yoo, Y.E.;Je, T.J.;Choi, D.S.;Kim, S.K.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.9-14
    • /
    • 2007
  • In this paper, a mold temperature control method for injection molding is proposed. The inner surface of mold is locally heated by jet impingement to improve pattern transcription. Heating by hot jet is completed while the mold is open. An experimental system that realizes the proposed idea has been built, which includes mold, nozzle assembly and heater. Actual injection molding process including the proposed heating procedure has been conducted to verify the validity of the method. The process has been done for several conditions with different jet temperatures and duration of heating. The results from different conditions are compared.

A Study on Welding Residual Stress Measurement by Laser Inteferometry and Spot Heating Method (레이저 간섭법과 점 가열법을 이용한 용접부의 잔류응력 측정에 관한 연구)

  • Hong, Kyung-Min;Lee, Dong-Hwan;Kang, Young-June
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.101-108
    • /
    • 2008
  • Residual stress is one of the causes which make defects in engineering components and materials. Many methods have been developing to measure the residual stress. Though these methods provide the information of the residual stress, they also have disadvantage like a little damage, time consumption, etc. In this paper, we devised a new experimental technique to measure residual stress in materials with a combination of laser speckle pattern interferometry and spot heating. The speckle pattern interferometer measures in-plane deformation during the heat provides for much localized stress relief. 3-D shape is used for determining heat temperature and other parameters. The residual stresses are determined by the amount of strain that is measured subsequent to the heat and cool-down of the region being interrogated. A simple model is presented to provide a description of the method. In this paper, we could experimentally confirm that residual stress can be measured by using laser interferometry and spot heating method.