• Title/Summary/Keyword: Heating Panel

Search Result 185, Processing Time 0.024 seconds

Thermomechanical Properties of Thermal-Stress Relief Type of Functionally Gradient Materials

  • Watanabe, Ryuzo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1993.11a
    • /
    • pp.2-2
    • /
    • 1993
  • The present status of the thennomechanica1 evaluation of functionally gradient materials(FGMs) for space plane application was reviewed, in which research activities and the cooperation of the national project team organized to study FGM science were demonstrated. The project team was divided into three working groups; de singing, processing and evaluation, each of which had their own tasks in the project cooperation. The testings details of the various thennomechanical tests for the FGM samples fabricated by the processing groups were described, along with their corresponding heating conditions of the real environments in the space plane application. For small-sized samples, laser beam heating test and burner heating test were well applied to study the heat shielding and heat resisting properties. Arc-heated wind tunnel test and high temperature!high velocity gas flow test were used for large-sized panel assemblies having cooling structures. The criteria for the evaluation of the heat shielding and heat resisting properties of the FGMs, as well as a crack activation mechanism in their differential temperature heating, were proposed on the basis of the observation in the burner heating test.

  • PDF

Experimental Study on Consumption of Energy and Heating Efficiency in Floor Water Heating System on Using Ondol Panel of Double Metal Rendering (이중금속융출형 온돌판넬을 이용한 바닥온수난방시스템의 난방성능과 에너지소비량에 관한 실험적 연구)

  • Bai, Dai-Kwon;Kim, Jin-Bong;Kim, Hwan-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6167-6175
    • /
    • 2012
  • This study is experimental analysis to verify heating efficiency of Ondol in floor heating panel developed. For this one, an experiment tests producing an each test speciment and measuring heating efficiency. The result of an experiment, supplying hot water temperature is $45^{\circ}C$ and the result of measuring on parts temperature of test speciment on supplying for 8 hours, mortar surface that is superstructure plumbing of heating system developed is $49.4^{\circ}C$, the gap of piping on center of mortar surface is $44.1^{\circ}C$ and airspace is proved $25.3^{\circ}C$. In floor structure of standards, mortar surface is $46.2^{\circ}C$, the gap of piping on center of mortar surface $37.7^{\circ}C$ and airspace is $24.7^{\circ}C$. On the other hand, energy consumption accumulating of development technology is identified, in case of hot-water supply on $45^{\circ}C$ as 4,646 kcal and in existing technology, as 4,814 kcal. developing technology is verified and lower than existing technology.

Study on the Conduction Heat Transfer Characteristics According to the Heating Temperature of Lightweight Panel Wall material (경량칸막이 벽체재료의 수열온도에 따른 전도 열전달 특성 연구)

  • Park, Sang-Min;Lee, Ho-Sung;Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2018
  • The paper relates to a study on the conduction heat transfer characteristics according to the heating temperature of lightweight panel wall material. Plywoods, marbles, heat resistant glasses, as well as general gypsum board and fire-proof gypsum board, which have been widely used for lightweight panel wall material, were selected as experiment samples, and heating temperatures were set as $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. Next, each of the heating temperatures were introduced on the bottom part of the wall material for 30 minutes, and analyses were made on the heat transfer characteristics to the backside part on the top part through conduction. As results of the experiment, the maximum backside temperatures were measured up to $190^{\circ}C$ for a general gypsum board, $198^{\circ}C$ for a fire-proof gypsum board, $189^{\circ}C$ for a plywood, $321^{\circ}C$ for a marble, and $418^{\circ}C$ for a heat resistant glass as heating temperatures were introduced maximum of $600^{\circ}C$. In addition, the maximum change rate of conduction heat transfer were measured up to 85 W for a general gypsum board, 95 W for a fire-proof gypsum board, 67 W for a plywood, 1686 W for a marble, and 3196 W for a heat resistant glass as the maximum heating temperatures were introduced up to $600^{\circ}C$. Also, carbonization characteristics of the wallpapers were measured to visually check the danger of conduction heat transfer, and the results showed that smokes were first generated on the attached wallpapers for the heating temperature $600^{\circ}C$, which were 1021 s for a general gypsum board, 978 s for a fire-proof gypsum board, 1395 s for a plywood, 167 s for a marble, and 20 s for a heat resistant glass, and that the first generation of carbonization were 1115 s for a general gypsum board, 1089 s for a fire-proof gypsum board, 1489 s for a plywood, 192 s for a marble, and 36 s for a heat resistant glass.

Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions

  • Wu, Xiangguo;Yu, Shiyuan;Tao, Xiaokun;Chen, Baochun;Liu, Hui;Yang, Ming;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.459-467
    • /
    • 2020
  • Mechanical and thermal properties of composite sandwich wall panels are affected by changes in their external environment. Humidity and temperature changes induce stress on wall panels and their core connectors. Under the action of ambient temperature, temperature on the outer layer of the wall panel changes greatly, while that on the inner layer only changes slightly. As a result, stress concentration exists at the intersection of the connector and the wall blade. In this paper, temperature field and stress field distribution of UHPC-RW-RC (Ultra-High Performance Concrete - Rock Wool - Reinforced Concrete) wall panel under high temperature-sprinkling and heating-freezing conditions were investigated by using the general finite element software ABAQUS. Additionally, design of the connection between the wall panel and the main structure is proposed. Findings may serve as a scientific reference for design of high performance composite sandwich wall panels.

A Study on Thermal Performance Evaluation with TAP (Thermosyphoning Air Panel) in Inside and Outside Insulated Constructions (TAP을 적용한 내단열과 외단열구조의 열성능 평가에 관한 연구)

  • Lee, Kyung-Hoi;Yoo, Ho-Chun;Hong, Yung-Woo;Chun, Chai-Hwi
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.23-29
    • /
    • 1987
  • TAP system, a kind of natural convective space heating collector, has a good heat loss by night. The aim of this paper is to induce and to study an hourly heat flow theory by response factors analysis with TAP in inside and outside insulated construction, to compare and evaluate on thermal performance an hourly natural temperature, heated room temperature and heating load in aboved-mention constructions with computer simulation. The results of the study can be summarized as follows. According that there is no TAP and with TAP, it is inside insulated construction and outside insulated construction, daily natural range of temperature each shows $12.5^{\circ}C$ and $16.7^{\circ}C$, $2.7^{\circ}C$ and $3.7^{\circ}C$, daily heated range of temperature with noramal control heating system each shows $6.6^{\circ}C$ and $12.1^{\circ}C$, $1.7^{\circ}C$ and $3.1^{\circ}C$, heating hours each show 10 hr and 7 hr, 9 hr and 4 hr and heating energy saving percentage in january 123% and 79%, 100% and 40%. Therefore, energy saving percentage shows that outside insulated construction saves about 54% in comparision with inside insulated construction.

  • PDF

Estimation of the thermal performance on the double slab floor with supplying air (급기가 되는 이중바닥 구조체의 열 성능 평가)

  • Cha, Kwang-Seok;Park, Myung-Sig;Lee, Dae-Woo;Nam, Woo-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.866-871
    • /
    • 2006
  • Recently according to the fashion of well-being, the case study of under floor heating system type for residential space is increasing. Specially double slab floor system can make several roles as reducing the acoustic noises and also supplying fresh air through the gap. So in present study floor heating performance was examined with various location of the space in the case of floor supply air and ceiling supply air. In both cases return air went out through ceiling opening. As one of the result is that when using the heat pipe type floor heating system the temperature difference between supply and return water was $15.2^{\circ}C$, but in case of commercial type floor heating system the temperature difference was $5.3^{\circ}C$ when the supply water temperature was $50^{\circ}C$.

  • PDF

A Study on the Method of Estimating Optimum Supply Water Temperature Considering the Heating Load and the Heat Emission Performance of Radiant Floor Heating Panel (난방부하와 온수온돌의 방열성능을 고려한 적정 공급온수온도 산출방법에 관한 연구)

  • Choi, Jeong-Min;Lee, Kyu-Nam;Ryu, Seong-Ryong;Kim, Yong-Yee;Yeo, Myoung-Souk;Kim, Kwang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.795-800
    • /
    • 2006
  • A common approach to achieve better thermal comfort with hydronic radiant floor heating system is supply water temperature control. This is the control method through which supply water temperature is varied with outdoor temperature. In this study, a comprehensive, yet simple calculation method to find optimum supply water temperature is evaluated by combining heat loss from the building and heat emission from the hydronic radiant floor heating system. And then the control performance of suggested calculation method is confirmed through experiment. It is shown that indoor air temperature is stably maintained around the set point.

  • PDF

The Outgasing characteristics of MgO film for protecting layer of plasma display panel

  • Song, Byoung-Kwan;Lee, Young-Joon;Lee, Chang-Heon;Hwang, Hyun-Ki;Yeom, Guen-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.621-624
    • /
    • 2002
  • In this study, outgassing characteristics of MgO films, and the plasma cleaning effects of the deposited MgO films by atmospheric pressure plasma on outgassing rate were compared. The MgO layer was heated up to 350 $^{\circ}C$ and the outgassing characteristics were observed for the heated conditions. As the main impurity species $H_2,\;H_2O,\;N_2,\;CO_2,\;and\;H_2O$ were released from this panel. Impurity species of plasma treatment panel were lower than non-treated panels for the heating temperature

  • PDF

A study on Flow Characteristic inside Passenger's Compartment under Recirculation Cool vent mode using CFX (CFX를 이용한 내부순환모드에서의 자동차 내부 유동특성 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The flow characteristics under recirculation cool vent mode is numerically studied using commercial fluid dynamic code(CFX). For the reliable analysis, real vehicle and human FE model is employed in grid generation process. The geometrical location and shape of panel vent, and exhaust vent is set as that of real vehicle model. The flowrate of the working fluid is determined as 330CMH which is equivalent to 70 percent of maximum capacity of HVAC system. The high velocity regions are formed around 4 each panel vent. Because of the non-symmetrically located exhaust, non-uniform flow and partial backflow near the door trim is observed. Streaklines start from each panel vent show the flow pattern of the airflow in the passenger's compartment very well.

The characteristics of anti-erosion for MgO protecting layer in plasma display panel (플라즈마 디스플레이 보호막으로 사용되는 마그네슘 산화막(MgO)의 내식각 특성)

  • 최훈영;이석현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.163-169
    • /
    • 2000
  • In this paper, we showed the erosion characteristic of MgO protector layer releated to lifetime of plasma display panel(PDP). We observed MgO erosion characteristic as a functions of deposition conditions, pressure and distance between electrodes. In RIE condition of Xe gas, the lowest erosion rate appears in the conditions of no heating bias voltage -30V and pressure 5mtorr. In general, as deposition rate increases, erosion rate decreases. In real panel, when the gap distance between electrodes is narrow and the pressure is low, the heavy plasma damage appears. Also, the surfaces between electrodes and on the bus electrode are extremely damaged.

  • PDF