• Title/Summary/Keyword: Heating Function

Search Result 472, Processing Time 0.032 seconds

Characteristics of ($AI_2$ $O_3$40%$YiO_2$)NiCr thermal sprayed composite coatings (($AI_2$ $O_3$40%$YiO_2$)NiCr 복합용사피막의 특성)

  • 김경호;박경채;김태형
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.114-116
    • /
    • 2003
  • The multi function sprayed coating is used for direct-heating, wear resistance and high bonding strength. The merits of surface direct-heating coatings are short warming time, low power consumption and better wear resistance that can be used in many organization parts. In this study, the surface direct-heating and wear resistance can be improved by spraying the proper materials on the surface $Al_2$O$_3$40%TiO$_2$ powder and Ni-20%Cr powder that had the properties of conduction and high wear resistivity are used in order to improve wear resistance, electrical properties and bonding strength.

  • PDF

Steady and Transient Solution of heat Conduction from hurried Pipes of panel heating Slab (상-파넬 히-팅의 해석법)

  • Lee Kun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.3 no.3
    • /
    • pp.185-190
    • /
    • 1974
  • Floor panel heating system is popular in Korea as dwelling house heating system. There are two methods for keeping floor surface warm. One method is delivering warm air under the floor such as Roman Hypocaust and Korean traditional Ondol. The other method is imbedding hot water pipes into the concrete floor slab. This paper gives basic equations for steady and transient solutions of heat conduction from hurried pipes. For steady-state solution, fin Efficiency Method and Sink and Source Method were introduced. Sink and Source Method is applied to transient state and basic solution is given in the form of Exponential Integral Function. Numerical solutions can be solved easily by digital computer from these equations.

  • PDF

A Study on the Optimal Water Flow Rate of the Solar Heating System (태양열 난방시스템의 최적 유량에 관한 연구)

  • Seong, Kwan-Jae;Kim, Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.1
    • /
    • pp.2-11
    • /
    • 1983
  • The solar energy retention rate of a flat plate collector can be increased by increasing water flow rate through the collector which also increases the pumping energy incurred in obtaining that solar energy. The problem of optimal flow rate is formulated to fit within the framework of pontryagin's maximum principle and with a few simplifying assumptions, an optimal solution that can be easily implemented is obtaincd, The optimal solution is used in the simulation of a solar heating system using actual climatological data and the results are compared with that of on-off control. The result that not only the object function but, In some cases, also the solar energy retention rate the collector is increased. In is also found that the optimal control gets more advantageous as the solar insolation level gets lower, and also as tile cost of auxiliary heating fuel gets higher.

  • PDF

Fabrication of Probe Beam by Using Joule Heating and Fusing (절연절단법을 이용한 프로브 빔의 제작)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Lee, Dong-In;Kim, Bonghwan;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • In this paper, we developed a beam of MEMS probe card using a BeCu sheet. Silicon wafer thickness of $400{\mu}m$ was fabricated by using deep reactive ion etching (RIE) process. After forming through silicon via (TSV), the silicon wafer was bonded with BeCu sheet by soldering process. We made BeCu beam stress-free owing to removing internal stress by using joule heating. BeCu beam was fused by using joule heating caused by high current. The fabricated BeCu beam measured length of 1.75 mm and width of 0.44 mm, and thickness of $15{\mu}m$. We measured fusing current as a function of the cutting planes. Maximum current was 5.98 A at cutting plane of $150{\mu}m^2$. The proposed low-cost and simple fabrication process is applicable for producing MEMS probe beam.

A Study on the Cooling Block Design for a Large Touch Screen Panel (TSP) Cover Glass Molding System (대형 Touch Screen Panel(TSP) 덮개유리 성형기의 냉각 블록 설계에 관한 연구)

  • Lee, Jun Kyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.36-42
    • /
    • 2020
  • Nowadays, the touch screen panel (TSP) cover glass for mobile smart devices is being developed with a curved glass shape due to different design requirements. Because the sizes of mobile smart devices continue to increase, there has also been a great increase in the demand for large-area curved glass greater than 20 inches. In this study, heat and fluid flow analysis using CFD was performed to optimize the heating surface temperature distribution of the large curved glass formation system. Five cooling water flow paths in the cooling block were designed and analyzed for each case. A function that can quantitatively calculate the temperature uniformity of the heating surface was proposed and these values were obtained for the five models. The temperature distributions of the heating surface and the energy consumption of the heating system were also compared and comprehensively analyzed. Based on the analysis results of the five different cooling channel path models, the optimal path design could be presented.

The Simulation Approach for the Optimal Design of Small Scale District Heating and Cooling System (소규모 지역냉난방 시스템 최적설계 시뮬레이션)

  • Im, Yong-Hoon;Park, Hwa-Choon;Cho, Soo;Jang, Cheol-Yong;Chung, Mo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.147-154
    • /
    • 2008
  • A simulation program is developed for the optimal design of small scale district heating and cooling system. Main features for the simulation program are the reliability and the easiness for the optimal design of the DHC(District Heating and Cooling) systems. In order for implementing those features, the operational characteristics according to the prime movers is modeled based on the materials of efficiency as a function of operational load. The unit energy load model is also developed extensively for several building types, of which the corresponding district consist, such as apartment complex, hotel, hospital, buildings for business and commercial use respectively. The specific features and the overall procedure of the simulation are described in brief in this paper. The results of the simulation for several test cases will be presented in subsequent study.

  • PDF

A Direct Calculation of Higher Heating Values of Ultrasonic Reformed Diesel Fuels by Using Their Viscosity and Surface Tension Measurements (초음파 개질 경유의 점도 및 표면장력 측정을 이용한 발열량 직접 계산)

  • Lee, B.O.;Ryu, J.I.
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.22-30
    • /
    • 2001
  • The objective of this study is to develop the new equations for the calculation of higher heating values(HHVs) of reformed diesel fuels by ultrasonic treatment. Therefore, higher heating values of reformed diesel fuels by ultrasonic treatment are determined experimentally and calculated from their viscosity and surface tension measurements. The HHVs of the fuels are supposed to be a function of viscosity(Pa s) and surface tension(N/cm). The equations developed for the samples represent the correlation obtained by means of regression analysis. The HHVs calculated by developing new equations using viscosities showes the differences from the measured values ranging from -0.66 to 1.19 % and the correlation coefficient was -0.9411. The HHVs calculated by developing new equations using surface tensions showed the differences from the measured values ranging from -0.70 to 1.51 % and the correlation coefficient was 0.9999. The viscosity and the surface tension are characteristic properties of ultrasonic reformed diesel fuels for developing new formulae.

  • PDF

Optimization of Algerian Thymus fontanesii Boiss. & Reut Essential Oil Extraction by Electromagnetic Induction Heating

  • Ali, Lamia Sid;Brada, Moussa;Fauconnier, Marie-Laure;Kenne, Tierry
    • Natural Product Sciences
    • /
    • v.24 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • The present study deals with the determination of optimal values of operating parameters such as the temperature of heating, the mass of the plant material and the volume of water leading to the best yield of electromagnetic induction (EMI) heating extraction of Algerian Thymus fontanesii essential oil. After an appropriate choice of the three critical variables, eight experiments leaded to a mathematical model as a first-degree polynomial presenting the response function (yield) in the relation to the operating parameters. From the retained model, we were able to calculate the average response, the different effects and their interactions. The maximum of essential oil recovery percentage relative to the initial mass of plant material was 1.69%, and was obtained at ($140^{\circ}C$, 250 g and 4.5 L). The chemical composition of the Algerian T. fontanesii essential oil under the obtained optimal conditions ($140^{\circ}C$, 250 g and 4.5 L), determined by GC/MS and GC/FID, reveled of the presence of major components such as: carvacrol ($70.6{\pm}0.1%$), followed by p-cymene ($8.2{\pm}0.2%$).

A Study on the Establishment of Optimum Design Conditions and Economic Evaluation for Rot Water Heating Solar Energy System (태양열(太陽熱) 급탕(給湯)시스템의 최적설계(最適設計) 조건(條件)의 설정(設定)과 경제성(經濟性) 평가(評價)에 관한 연구(硏究))

  • Lee, Young-Soo;Lee, Ki-Woo
    • Solar Energy
    • /
    • v.6 no.1
    • /
    • pp.47-59
    • /
    • 1986
  • This paper presents the establishment of optimum design conditions and economic evaluation for solar hot water system. The aim of this study is to present thermal performance of solar heating systems and to determine their performance as a function of collector size, storage capacity, tilting of collector and other factors. By analyzing its performance under the various conditions, optimum design of solar heating system can be obtained. System performance are obtained monthly and yearly basis respectively. At the same time the economics of various systems are evaluated. For the computer simulation Mokpo, Kangnung, Chupungnyong and Seoul are selected for particular installation places. As a result, the optimal design condition of solar heating system considering the following factors such as installation angle of collector, capacity of storage tank, collector size in each place can be obtained as follows; (1) Installation angle of collector Tilt = lattitude (2) Capacity of storage tank Solar domestic hot water system : $45\;1/m^2$ Multifamily solar domestic hot water system : $35\;1/m^2$ (3) Collector size i) Solar domestic hot water system Seoul & Chupyungyong area : $11.52\;m^2$ Mokpo area : $8.64\;m^2$ ii) Multifamily solar domestic hot water system Seoul, Chupyungyong & Mokpo area : $345.6\;m^2$ Kangnung area : $259.2\;m^2$

  • PDF

A Study on the Algorithm for the Occupancy Inference in Residential Buildings using Indoor CO2 Concentration and PIR Signals (실내 CO2 농도와 PIR 신호를 활용한 주거건물의 재실 추정 알고리즘에 관한 연구)

  • Rhee, Kyu-Nam;Jung, Gun-Joo
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.113-119
    • /
    • 2018
  • Occupancy-based heating control is effective in reducing heating energy by preventing unnecessary heating during unoccupied period. Various technologies on detecting human occupancy have been developed using complicated machine learning algorithm and stochastic methodologies. This study aims at deriving low-cost and simple algorithm of occupancy inference that can be implemented to residential buildings. The core concept of the algorithm is to combine the occupancy probabilities based on indoor CO2 concentration and PIR(passive infrared) signals. The probability was estimated by applying different levels of decrement ratio depending on CO2 concentration change rate and aggregated PIR signals. The developed algorithm was validated by comparing the inference results with the occupancy schedule in a real residential building. The results showed that the inference algorithm can achieve the accuracy of 75~99%, which would be successfully implemented to the control of residential heating systems.