• Title/Summary/Keyword: Heating Energy

Search Result 3,245, Processing Time 0.029 seconds

A Study on the Design of Smart Farm Heating Performance using a Film Heater (필름 히터를 이용한 스마트 팜 난방 성능 설계에 관한 연구)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2023
  • This paper presents the optimal design of a heating system using radiant heating elements for application in smart farms. Smart farming, an advanced agricultural technology, is based on artificial intelligence and the internet of things and promotes crop production. Temperature and humidity regulation is critical in smart farms, and thus, a heating system is essential. Radiant heating elements are devices that generate heat using electrical energy. Among other applications, radiant heating elements are used for environmental control and heating in smart farm greenhouses. The performance of these elements is directly related to their electrical energy consumption. Therefore, achieving a balance between efficient electrical energy consumption and maximum heating performance in smart farms is crucial for the optimal design of radiant heating elements. In this study, the size, electrical energy supply, heat generation efficiency, and heating performance of radiant heating elements used in these heating systems were investigated. The effects of the size and electrical energy supply of radiant heating elements on the heating performance were experimentally analyzed. As the radiant heating element size increased, the heat generation efficiency improved, but the electrical energy consumption also increased. In addition, increasing the electrical energy supply improved both the heat generation efficiency and heating performance of the radiant heating elements. Based on these results, a method for determining the optimal size and electrical energy supply of radiant heating elements was proposed, and it reduced the electrical energy consumption while maintaining an appropriate heating performance in smart farms. These research findings are expected to contribute to energy conservation and performance improvement in smart farming.

Analysis of Heating Energy in a Korean-Style Apartment Building 2: The Difference according to Heating Type (한국형 아파트의 난방에너지 분석 2: 난방방식에 따른 차이)

  • Lee, Bong-Jin;Jung, Dong-Yeol;Lee, Sun;Hong, Hee-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.459-466
    • /
    • 2004
  • In order to save the energy in apartment houses, it is essential that the energy amount consumed in heating per household should be surveyed and analyzed according to heating method, which can be classified into unit, central and district methods. As a basis, we selected the household with nominal area of 32 py. because it accounts for the most percentage in Korea. It is estimated that the gas amount for cooking is 90 ㎥ and the energy amount for hot water supply is 11.41 GJ for a year, which is necessary to calculate the heating energy. Through the survey of actual energy consumption in Seoul and Gyeonggi, the energy amount used in heating can be obtained according to the heating type: 26.02 GJ/year for the unit heating, 28.09 GJ/year for the central heating and 40.61 GJ/year for the district heating.

Modeling of Winter Time Apartment Heating Load in District Heating System Using Reduced LS-SVM (Reduced LS-SVM을 이용한 지역난방 동절기 공동주택 난방부하의 모델링)

  • Park, Young Chil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.283-292
    • /
    • 2015
  • A model of apartment heating load in a district heating system could be useful in the management and utilization of energy resources, since it could predict energy usage and so could assist in the efficient use of energy resources. The heating load in a district heating system varies in a highly nonlinear manner and is subject to many different factors, such as heating area, number of people living in that complex, and ambient temperature. Thus there are few published papers with accurate models of heating load, especially in domestic literature. This work is concerned with the modeling of apartment heating load in a district heating system in winter, using the reduced least square support vector machine (LS-SVM), and with the purpose of using the model to predict heating energy usage in domestic city area. We collected 23,856 pieces of data on heating energy usage over a 12-week period in winter, from 12 heat exchangers in five apartments. Half of the collected data were used to construct the heating load model, and the other half were used to test the model's accuracy. The model was able to predict the heating energy usage pattern rather accurately. It could also estimate the usage of heating energy within of mean absolute percentage error. This implies that the model prediction accuracy needs to be improved further, but it still could be considered as an acceptable model if we consider the nonlinearity and uncertainty of apartment heating energy usage in a district heating system.

A Study on Solar Heating System Technology Combining Multiple Technology with Mutual-Complementary Method - Low-cost, high efficiency, large-scale use of solar heating system - (다원기술 상호보완식 태양열 난방기술 - 저원가 고효율 규모화 태양열 난방 방안 -)

  • Nan, Bao-Xuan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.15-23
    • /
    • 2008
  • The article deals with system technology of a new solar heating system which systematically combines exiting solar collector technology, auxiliary electrical water heating, floor heating system and well insulated construction method and its application of this system to apartment house heating system in the cold region, and also analyzed performance of the new system in terms of technical and economic feasibility. Results shows that energy efficiency approaches up to 50% of the energy consumption of local construction from 1980 to 1981. The implementation of "DQ technology" to floor heating system achieved from 79% to 85% of the energy-saving benefits comparing to other housing units which were supplied by the local district heating plant.

A Study on the Energy Consumption and the Degree of Satisfaction by Heating System in Rental Apartment (임대아파트 난방방식별 에너지소비와 만족도 조사에 관한 연구)

  • 박민용;장승재
    • Journal of the Korean housing association
    • /
    • v.14 no.3
    • /
    • pp.85-92
    • /
    • 2003
  • Considering the present development situation of rental apartment since 1982, the supply of homeless housing for low-income dwellers has contributed a amount of quantities, but has been deficient qualities in housing policy. To propose the energy policy for low-income dwellers, this study investigated the energy consumption and the degree of heating satisfaction by heating system through questionaries in permanent rental apartment and 50 year period rental apartment complexes. The results of this study were as follows; The annual energy consumption of heating and hot water supply is 267.2 Mca1/$\textrm{m}^2$ㆍyr in central heating system, is 163.9 Mca1/$\textrm{m}^2$ㆍyr in unit heating system. But from the view of annual energy cost and the degree of heating satisfaction, central heating system were better than unit heating system in rental apartment.

Intermittent Heating and Cooling Load Calculation Method -Comparing with ISO 13790

  • Lee, Sang-Hoon
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • College of Architecture, Georgia Institute of Technology, Atlanta, GA, US Abstract The intermittent heating and cooling energy need calculation of the ISO 13790 monthly method was examined. The current ISO 13790 method applies a reduction factor to the continuous heating and cooling need calculation result to derive the intermittent heating and cooling for each month. This paper proposes a method for the intermittent energy need calculation based on the internal mean temperature calculation. The internal temperature calculation procedure was introduced considering the heat-balance taking into account of heat gain, heat loss, and thermal inertia for reduced heating and cooling period. Then, the calculated internal mean temperature was used for the intermittent heating and cooling energy need calculation. The calculation results from the proposed method were compared to the current ISO 13790 method and validated with a dynamic simulation using EnergyPlus. The study indicates that the intermittent heating and cooling energy need calculation method using the proposed model improves transparency of the current ISO 13790 method and draws more rational outcomes in the monthly heating and cooling energy need calculation.

Analysis of Heating Energy in a Korean-Style Apartment Building 3 : The Effect of Room Condition Settings (한국형 아파트의 난방에너지 분석 3 :실내설정조건의 영향)

  • Park, Yoo-Won;Yoo, Ho-Seon;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.722-728
    • /
    • 2005
  • The present paper deals with heating energy estimation in Korean-style apartments, paying special attention to the effect of room condition settings. Two types of heating modes are considered: continuous single-zone and scheduled multi-zone. In the latter, zones during unoccupied periods remain unconditioned. Also analyzed are sensitivities in heating energy with respect to the air change rate and the set temperature. The energy use is estimated with TRNSYS 15, a dynamic load calculation program. Heating energy for the actual residential condition (1.0 ACH and $24^{\circ}C$) appears to be nearly the same as that for a typical design standard (1.5 ACH and $20^{\circ}C$). The air change rate affects heating energy as sensitive]y as the set temperature. For all the simulated cases, the scheduled multi-zone heating mode is more energy-efficient than the continuous single-zone. Heating energy depends appreciably on the shading factor. It is expected that considerable heating energy for apartment houses can be saved by employing a multi-zone mode along with appropriate control devices.

Heating Energy Consumption Analysis of the Apartment Applied District Heating System (지역난방 공동주택의 단지별 난방사용량 분석 연구)

  • Park, Sun-Hyo;Lee, Hyun-Jung;Kwon, Kyung-Woo;Lee, Byung-Seok;Kim, Yang-Sub
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.293-298
    • /
    • 2012
  • The purpose of this study is performance validation of district heating apartments about heating energy consumption and analysis of energy consumption by unit characteristics. The heating energy consumption of the existing apartments was analyzed and the analyzed results will be used for energy saving technology development and policy making. The heating energy consumption data about total 78 apartment complexes, 56,910 units in Gangnam-Gu, Seoul, Korea were investigated from October, 2010 to April 2011. The analysis results are as follows; The mean heating energy consumption is 98[kWh/m2]. The energy consumption of Apgujung-Dong, Daechi-Dong is higher than that of mean valuse. The energy consumption deviation by deterioration, unit area, core type and regional group is very high. Specially, building deterioration casts a long shadow.

  • PDF

A Fundamental Study On the Self-Sufficient Heating Energy for Residential Building (주거용 건물의 난방 에너지 자립을 위한 기초 연구)

  • Son, Sun-Woo;Baek, Nam-Choon;Suh, Seung-Jik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.255-258
    • /
    • 2009
  • Leading developed countries have studied energy self-sufficient houses such as zero or low energy buildings to reduce energy consumption for buildings since the early 1990s. Moreover, some developed countries have actually constructed self-sufficient houses and operated them for demonstration, expanding use of such houses. Korea has also established Zero Energy Solar House(ZeSH) and studied energy independence. Therefore, this study analyzed research result regarding ZeSH, self-sufficient energy house hold of Korea, found out technologies used for heating energy independence, used building interpretation program(ESP_r) to evaluate performance of each factors and analyzed energy reduction quantitatively. Results from the research are as follows: Reduction rate of actual detached house's heating load was also analyzed quantitatively depending on application of each technology. When each factor was applied step-by-step, annual reduction rate of heating load depending on increase in insulation thickness reached 6.6~22.2 %. Annual reduction rate of heating load depending on increase insulation thickness, and change in window heating performance and area ratio reached 31.5 %. Annual reduction rate of heating load through high-sealing and high-insulation depending on change in leakage rate reached 40.0~88.9 %. Annual reduction of heating load, when Mass Wall and attached sun space was applied were applied reached 28.5~39.2 %, respectively.

  • PDF

Analysis of Heating Energy Consumption of District Heated Apartment with respect to Reinforcement of Building Energy-saving Design Criteria (지역난방 공동주택의 건축물 에너지절약 설계기준 강화에 따른 난방에너지 사용량 분석)

  • Lee, Sung-Woo;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.16-22
    • /
    • 2011
  • Since 1970s, energy-saving design criteria of buildings has been improved through numerous revisions. The purpose of this research is to show how energy saving design criteria affects heating energy consumption of apartments using district heating. Heating energy consumption has been measured in 4 apartments located in Gyeonggi province, Korea from Nov. 1,2007 through Oct. 31, 2008. Collected data was regressed to linear correlations. Heating energy consumptions were calculated for past, present and future energy-saving design criteria, which are outdoor temperature, ventilation and insulation. The results show that present design criteria has reduced heating energy consumption by 15%, and the future criteria will reduce the energy consumption by 42% compared to the criteria before 2001.