• Title/Summary/Keyword: Heating Device

검색결과 478건 처리시간 0.022초

Early Intervention for Low-Temperature Burns: Comparison between Early and Late Hospital Visit Patients

  • Choi, Matthew Seung Suk;Lee, Ho Joon;Lee, Jang Hyun
    • Archives of Plastic Surgery
    • /
    • 제42권2호
    • /
    • pp.173-178
    • /
    • 2015
  • Background Various focal heating devices are popular in Korea under the cultural influence of the traditional ondol under-floor method of home heating. These devices can cause severe burn-like injuries resulting from device malfunction or extended with low heat contact. In addition to injuries under these high heat contact, burns can be occurred by low heat exposure with prolonged periods despite the devices are properly functioning. In order to develop strategies to reduce the duration of periods of illness due to low-temperature burns, we analyzed and compared treatment methods and therapeutic periods for this type of injury. Methods This retrospective study included 43 patients burned under low heat conditions. Patients were divided into an operative group and a conservative group. The patients in the operative group underwent at least one surgical excision, and were further subdivided into early and late visit groups. The conservative group was treated only with dressings. We compared the treatment periods between the operative group and the conservative group, and also compared the preparation periods and treatment periods between the two operative groups. Results The average treatment period was significantly shorter in the operative group (P=0.02). In the early visit operative group, both wound preparation and treatment were briefer than in the late visit group. Conclusions We recommend that early proper burn care and early surgical intervention, including appropriate excision, are feasible ways to reduce the treatment period of lowtemperature burn patients.

열회수장치의 열교환 파이프배치형식별 열교환 성능 비교(II) (Comparision of Heat Exchanging Performance Depending on Different Arrangement of Heat Exchanging Pipe (II))

  • 서원명;강종국;윤용철;김정섭
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.281-285
    • /
    • 2001
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared for the comparison of heat recovery performance; AB-type(control unit) is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types(C-type and D-type) modified from the control unit are different in the aspects of airflow direction(U-turn airflow) and pipe arrangement. The results are summarized as follows; 1. In the case of Type-AB, when considering the initial cost and current electricity fee required for system operation, it is expected that one or two years at most would be enough to return the whole cost invested. 2. Type-C and Type-D, basically different with Type-AB in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than $25\;m^{3}/min$. Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This is assumed to be that air flow resistance in high air capacity reduces the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate in Type-C and Type-D were improved by about 5% and 13%, respectively. 3. Desirable blower capacity for these heat recovery units experimented are expected to be about $25\;m^{3}/min$, and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it is recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., are required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

  • PDF

흡열판에 돌출형 삼각 개구부가 설치된 가정용 태양열 공기가열기의 열성능에 대한 실험적 연구 (Experimental Study on the Thermal Performance of a Domestic Solar Air Heater with Protruding Triangular Openings on the Absorber Plate)

  • 김현곤;부준홍
    • 한국태양에너지학회 논문집
    • /
    • 제36권2호
    • /
    • pp.41-51
    • /
    • 2016
  • A solar air heater was designed for supplementary domestic heating. The absorber plate had a series of protruding notches which had triangular openings on the front surface of the absorber plate to direct partial air flow to the rear surface and to enhance the convective heat transfer to the flowing air. The height of the opening as well as the opening configuration was determined by preceding numerical simulations. The experimental model had an absorber plate of 0.78-m width and 1.0-m length which was coated with black paint. The air temperature increased as much as $18^{\circ}C$ for $90-m^3/h$ flow rate when the absorber plate was inclined by $45^{\circ}$ for a clear-day solar irradiation of about $906W/m^2$. The collector efficiency ranged from 69 to 74%. Considering the simplicity of the structure and low manufacturing cost, the solar air heater might have competence as an auxiliary heating device for domestic use. On-site experimental results are presented with discussion for various solar irradiations and air flow conditions.

디젤엔진 배출가스 질소산화물 저감을 위한 Solid SCR용 Ammonium Carbonate 중간생성물인 재응고 물질의 분석 연구 (Analytical Study on Re-solidification Materials(Ammonium Carbonate Intermediates) for NOx Reduction of Exhaust Emissions in Diesel Engine with Solid SCR)

  • 신종국;이호열;윤천석;김홍석
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.152-159
    • /
    • 2014
  • Urea solution as a reductant of SCR has been widely used to reduce NOx emissions from diesel engine. But it has lots of problems which are freezing at low temperature due to liquid state, deposition of solid formation in the exhaust, dosing device, and complex package such as mixers for uniform concentration of ammonia. In order to overcome these obstacle, ammonium carbonate which is one of solid ammonium materials to produce ammonia gas directly by sublimation process is considered. Simple reactor with visible widow was designed to predict equilibrium temperature and pressure of ammonium carbonate. To simulate real operation conditions under automobile environment, several cycles of heating and cooling condition were settled, two different re-solidification materials were extracted from the reactor and visible window. Analytical study is performed to characterize these unknown materials by XRD(X-Ray Diffraction), FT-IR(Fourier Transform Infrared Spectroscopy), and EA(Elemental Analyzer). From analytical results, re-solidification materials from heating and cooling cycles are very similar to original material of ammonium carbonate.

자연형 및 설비형 태양열 온수기의 이용특성에 대한 실험적 연구 (The Experimental Research for the Use Characteristics of the Passive and Active type Domestic Solar Hot Water Systems)

  • 이동원;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.82-88
    • /
    • 2013
  • There are the stirring test and drain test in the daily performance test to determine the thermal performance of a domestic solar hot water system. The drain test is a test that measures the discharge heating rate while drain the hot water from the top of the storage tank and supply the city water to the bottom of the tank. From the perspective of the user, this drain test is more effective than the stirring test. In this study, the thermal performance were compared through the drain test for a passive type and an active type domestic solar hot water systems consisting of the same storage tank and collectors. At this point, a passive type was used the horizontal storage tanks, and an active type was used vertical storage tank. In the drain test, when the hot water drained up to the reference hot water temperature, an active type which have vertical storage tank represents excellent daily performance than a passive type which have horizontal storage tank regardless of weather conditions. The reason for this is because the vertical storage tank is advantageous to thermal stratification in the tank. After the drain test, the residual heat for the horizontal storage tank was much more than the vertical storage tank, but in the next day the amount of discharged heat were less than the those of vertical storage tank neither. Thus, the solar water heating system which have horizontal storage tank should be adopted preheating control method rather than separate using control method when connected with auxiliary heat source device.

열전발전소자 제작 및 발전특성 분석 (Fabrication of Thermoelectric Module and Analysis of its Power Generation Characteristics)

  • 최태호;김태영
    • 융합정보논문지
    • /
    • 제11권2호
    • /
    • pp.90-97
    • /
    • 2021
  • 본 연구에서는 산업현장에서 미활용되는 열에너지를 회수하여 유용한 전기에너지로 변환하기 위한 Bi2Te3 계열 열전소자를 제작하고 에너지회수 성능 및 물성을 도출하였다. 성능시험을 위하여 카트리지 히터 가열 방식의 가열블록과 냉매가 흐르는 냉각블록으로 구성된 전용 실험장치를 구성하였으며, 가열블록과 냉각블록에는 3×3 배열의 열전대를 장착하여 소자 양 면 온도와 열전달율을 도출하였다. 최소 온도차 27K부터 최대 온도차 172.2K까지 총 9가지의 온도차에 대해 실험을 수행하여 V-I curve와 P-R curve를 도출하였고 성능에 주요한 영향을 미치는 제벡계수 등 변수 7가지에 대하여 온도차에 대한 함수로 결과를 제시하였다. 최대 발전양 7.5W와 변환효율 11.3%의 결과로부터 개발된 열전소자의 열에너지 회수 성능의 타당성을 검증하였다.

바이오 시료의 적정온도 사이클 유지를 위한 채널형 히트싱크에 대한 실험적 연구 (Experimental Study on the Channel Type Heat Sink to Maintain Proper Temperature Cycle of Bio-Sample)

  • 황정규;박상희
    • 한국산업융합학회 논문집
    • /
    • 제26권1호
    • /
    • pp.183-191
    • /
    • 2023
  • This study was conducted experimentally to investigate the surface temperature of the heat sink, the air temperature in the flow channel and the sample temperature by changing the channel number of channel type heat sink and the air flow rate when heating and cooling the bio sample. The target temperature of the sample was 15℃ or less as the minimum value and 82℃ or more as the maximum value. In this study, the channel number of the heat sink(N = 1, 2, 4, 5, 10) and the air flow rate(Q=25, 42, 54m3/min) were varied. The bio sample was replaced with water, and the volume of water is 4mL. The size of the heat sink is 80x73x150mm and the material is aluminum. When cooling the sample, the surface temperature, the air temperature and the sample temperature were highly dependent on the number of channels and the flow rate. However, when the sample is heated, the surface temperature, air temperature and sample temperature do not depend on the number of channels and the flow rate. It was found that the conditions for satisfying the minimum temperature of 15℃ or less when cooling the sample were the number of channels N≥5 and the flow rate Q≥42m3/min. When heating the sample, the conditions to satisfy the maximum temperature of 82℃ or more are the number of channels N≤5 and the air flow rate Q≤42m3/min.

Temperature Analysis for the Point-Cell Source in the Vapor Deposition Process

  • Park, Jong-Wook;Kim, Sung-Cho;Hun Jung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1680-1688
    • /
    • 2004
  • The information indicating device plays an important part in the information times. Recently, the classical CRT (Cathod Ray Tube) display is getting transferred to the LCD (Liquid Crystal Display) one which is a kind of the FPDs (Flat Panel Displays). The OLED (Organic Light Emitting Diodes) display of the FPDs has many advantages for the low power consumption, the luminescence in itself, the light weight, the thin thickness, the wide view angle, the fast response and so on as compared with the LCD one. The OLED has lately attracted considerable attention as the next generation device for the information indicators. And also it has already been applied for the outside panel of a mobile phone, and its demand will be gradually increased in the various fields. It is manufactured by the vapor deposition method in the vacuum state, and the uniformity of thin film on the substrate depends on the temperature distribution in the point-cell source. This paper describes the basic concepts that are obtained to design the point-cell source using the computational temperature analysis. The grids are generated using the module of AUTOHEXA in the ICEM CFD program and the temperature distributions are numerically obtained using the STAR-CD program. The temperature profiles are calculated for four cases, i.e., the charge rate for the source in the crucible, the ratio of diameter to height of the crucible, the ratio of interval to height of the heating bands, and the geometry modification for the basic crucible. As a result, the blowout phenomenon can be shown when the charge rate for the source increases. The temperature variation in the radial direction is decreased as the ratio of diameter to height is decreased and it is suggested that the thin film thickness can be uniformed. In case of using one heating band, the blowout can be shown as the higher temperature distribution in the center part of the source, and the clogging can appear in the top end of the crucible in the lower temperature. The phenomena of both the blowout and the clogging in the modified crucible with the nozzle-diffuser can be prevented because the temperature in the upper part of the crucible is higher than that of other parts and the temperature variation in the radial direction becomes small.

열회수장치의 열교환 파이프배치 형식별 열교환 성능 (Heat Exchanging Performance as Affected by Arrangement of Heat Exchanging Pipe)

  • 윤용철;강종국;서원명
    • 생물환경조절학회지
    • /
    • 제11권3호
    • /
    • pp.101-107
    • /
    • 2002
  • 본 연구에서는 온실의 온풍식 난방시스템 연통에 장착할 수 있는 폐열 회수기의 성능을 개선하기 위하여 각각 상이하게 설계된 3개의 열교환 장치에 대해 열회수 성능을 실험적으로 비교 분석하였다. A형 열회수시스템의 경우, 초기 투자비용과 현재의 농용 전력요금 하에서 대체로 1년을 전후하여 투자에 대한 보상이 충분한 것으로 판단된다. B형 및 C형 열회수시스템의 경우, 열 회수용 공기 흐름방향이 180$^{\circ}$굴절로 저항이 크게 발생되어 송풍팬의 전압 증가에 따른 유속 증가가 미미하며 동일한 열 교환면적에서는 송풍팬의 공기저항 증대로 열 회수 성능이 현저히 개선되지는 못했지만, 직선형보다 B형의 경우 약 5%. C형의 경우 약 13%정도 높은 열 회수효율을 보였다. 송풍팬의 용량은 A형에 사용된 용량인 25m$^3$/min전후가 적절할 것으로 판단되며, 적정 송풍팬 용량 하에서 열회수성능은 헤어핀형이 직선형보다 효과적인 것으로 나타났다. 다만, 헤어핀형은 물론 직선형에서도 열교환 파이프의 배치밀도, 파이프 길이 및 두께 등의 변화에 따른 최적화 연구가 수반되어야 할 것으로 판단된다.

CNT 마이크로파 가열을 이용한 고분자 기판의 상온 접합 및 기계적 특성평가 (Room-temperature Bonding and Mechanical Characterization of Polymer Substrates using Microwave Heating of Carbon Nanotubes)

  • 손민정;김민수;주병권;이태익
    • 마이크로전자및패키징학회지
    • /
    • 제28권2호
    • /
    • pp.89-94
    • /
    • 2021
  • 최근 플렉시블 기기의 상용화를 위하여 기계적 신뢰성 연구가 활발히 진행되고 있으며 이를 고려하여 신뢰성 높은 다양한 접합부의 구현이 중요하다. 기기의 많은 부피를 차지하는 고분자 기판 또는 필름을 접합할 때에는 재료의 약한 내열성으로 접합공정 중 열 손상이 발생할 수 있으므로 신뢰성을 확보를 위해 상온 접합공정이 필요하다는 제약이 있다. 기존의 기판 접합을 위해 사용되는 에폭시 또한 고온 경화가 요구되는 경우가 많고, 특히 경화 접합 후 에폭시는 접합부 유연성 및 피로 내구성에서 한계를 보인다. 이를 해결하기 위하여 접착제 사용이 없는 저온 접합 공정의 개발이 필요한 상황이다. 본 연구에서는 마이크로파에 의한 탄소나노튜브 가열을 이용한 고분자 기판의 저온 접합공정을 개발하였다. PET 고분자 기판에 다중벽 탄소나노튜브 (MWNT)를 박막 코팅한 뒤 이를 마이크로파로 국부 가열함으로써 접합 기판 전체는 저온을 유지하며 CNT-PET 기계적 얽힘을 유도하는 방식이다. PET/CNT/PET 접합시편에 600 Watt 출력의 마이크로파를 10초간 조사함으로써 유연기판 접합에 성공하였고 매우 얇은 CNT 접합부를 구현하였다. 접합 시편의 기계적 신뢰성을 평가하기 위해 중첩 전단 강도 시험, 삼점 굽힘 시험, 반복 굽힘 시험을 수행하였으며 각 시험으로부터 우수한 접합강도, 유연성, 굽힘 내구성이 확인되었다.