• Title/Summary/Keyword: Heating Degree Day

Search Result 32, Processing Time 0.022 seconds

A Case Study on Energy Consumption and Calibration of Green Remodeling Buildings (그린리모델링 건물에 대한 에너지소비량 및 보정 사례연구)

  • Kim, Dongi;Lee, Byeongho
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.47-58
    • /
    • 2020
  • Ministry of Land, Infrastructure and Transport(MOLIT) has increased reduction rate from 18.1% to 32.7% in Building sector compared to BAU of the national greenhouse gas emission according to the 2030 Greenhouse Gas Reduction Road map Amendment. For this purpose, MOLIT has been activating the green remodeling projects for existing buildings. Considering that 15 year old buildings after completion are 74% (5.25 million buildings) among about 7 million existing building stocks in Korea, reduction of building energy consumption by green remodeling is urgently needed, However, it is a major difficulty of activation for green remodeling projects because there are few case studies on Before and After building energy consumption of actual green remodeling projects. Considering that building energy performance and value increase after green remodeling through previous researches, additional studies of the energy consumption assessment on actual green remodeling projects are essential. Therefore, this study aims to propose results on Before and After building energy consumption of actual green remodeling projects.

The Development of the Calibration Method of Building Energy Consumption by HDDm and CDDm (냉·난방도일에 따른 건물에너지 사용량 보정기법 개발)

  • Kim, Dongi;Lee, Byeongho
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.15-26
    • /
    • 2018
  • It is difficult to check the exact building energy consumption reduction such as when green remodeling of buildings, because it is due to outdoor air temperature over the years. And in Korea although Big Data of building energy consumption is collected and managed through "The Information System of the Building Energy and Greenhouse Gases" it is underutilized because of non calibration of outdoor air temperature change. Therefore, this study aims to develope calibration method of building energy consumption by outdoor air temperature according to micro climates, and building use types. As a result of analysis, Regression equations of Building energy consumption and $HDD_m/CDD_m$ are derived and calibration method is developed by Regression coefficient.

Development of Bin Weather Data for Simplified Energy Calculations (간역열부하계산용(簡易熱負荷計算用) Bin기상(氣象)데이터)

  • Kim, Doo Chun;Choi, Jin Hee
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.1
    • /
    • pp.28-43
    • /
    • 1988
  • The purpose of this research is to produce bin weather data for Seoul from Standard Weather Data. The intended use of these data is for input to recently developed models for simplified energy calculations and for generating variable-base degree-day information. The data produced under this study include $3^{\circ}C$ bin data covering the full range of dry-bulb temperatures with mean coincident wet-bulb and daytime coincident solar radiation, wet-bulb bins down to freezing temperature, wind speed bins with prevailing directions, and heating and cooling degree hours to nine different temperature bases. All of these data are tabulated in six separate time periods and total daily categories for monthly and annual periods.

  • PDF

Application and Healing Process of Femoral Head and Neck Ostectomy on Retriever Dogs with Hip Dysplasia (고관절 이형성을 지닌 Retriever에서 대퇴골두 절단술의 적용)

  • 고희곤;정순욱;김준영;정만복;한현정;김지선
    • Journal of Veterinary Clinics
    • /
    • v.20 no.1
    • /
    • pp.104-109
    • /
    • 2003
  • This study was performed to evaluate the postoperative heating process according to lameness degree, swelling, and muscle atrophy after femoral head and neck ostectomy on Retriever dogs with hip dysplasia and hindleg lameness. Femoral head and neck ostectomy (FHO) was performed for the repair of hip dysplasia in 4 Retriever dogs (5 hips) referred in veterinary medical teaching hospital of college of veterinary medicine, Konkuk University. Age (Mean $\pm$ SD) of patients was 10.3 $\pm$ 3.0 months (range,7 to 16 months) and body weight (Mean $\pm$ SD) was 28.2 $\pm$ 3.4 kg (range, 25 to 34 kg). After FHO, all cases are treated with carprofen (2.2 mg/kg, PO bid, tapering at interval 1-2 weeks) and physical therapy including passive range-of-motion exercises. In all cases, lameness degree was showed V at the next day after surgery, IV at 5 to 7 days, II-III at 30 to 35 days, II at 60 days, and I at 105 to 114 days. These results suggested that femoral head and neck ostectomy was able to be performed on large breed dogs with hip dysplasia and hindleg lameness.

Growth and Berry Quality of 'Kyoho' Grapes in Double Cropping System as Affected by Root Zone Heating and CO2 Enrichment in Plastic Greenhouse ('거봉' 포도 2기작 재배 시 근권 가온 및 CO2 시용이 생장 및 과실 품질에 미치는 영향)

  • Oh, Sung Do;Kim, Yong Hyeon;Choi, Dong Geun
    • Horticultural Science & Technology
    • /
    • v.19 no.3
    • /
    • pp.367-372
    • /
    • 2001
  • 'Kyoho' grape (Vitis labruscana L.) has currently cropped twice a year in plastic greenhouses. However, there are problems with low fruit quality in the second cropping owing to low temperatures and short photoperiods. This experiment was conducted to investigate the effect of root zone heating and $CO_2$ enrichment in plastic greenhouse on the vine growth and fruit quality of 'Kyoho' grape in double cropping system. The internode length of shoots, leaf area and leaf dry weight at the treatment of soil heating near root zone was significantly different regardless of $CO_2$ enrichment. There were no significant differences in fruit bunch and berry weight, titratable acidity, coloration degree and berry shattering among the treatments, but the soluble solids significantly increased by root zone heating. Photosynthetic rate increased with increasing $CO_2$ concentration from 300 to $800{\mu}mol{\cdot}mol^{-1}$ in sunny day, whereas it didn't increase in cloudy day regardless of $CO_2$ enrichment.

  • PDF

Comparison on Heating & Cooling Loads Analysis in Buildings with Modified Bin Method (수정(修正)빈법(法)에 의한 건물(建物)의 기간(期間) 열부하(熱負荷) 해석(解析)에 관한 비교(比較) 연구(硏究))

  • Sohn, J.Y.;Yoon, D.W.;Yee, J.J.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.6
    • /
    • pp.675-685
    • /
    • 1988
  • The purpose of this paper is to present the fundamental information for setting up more accurate and easier heat loads analysis method by examing and comparing Modified Bin Method with Dynamic loads calculation and Extended Degree Day Method. For this comparison, monthly and annual loads calculation are performed in perimeter zones of model office building in Seoul by the above each Method. The results of Modified Bin Method are approximated to those of Dynamic loads calculation Method, and the correlations of the methods are specifically described in this paper.

  • PDF

The Effect of Urban and Climate Characteristics on Energy Resilience - Focusing on Blackout Time - (도시 및 기후특성이 에너지 회복력에 미치는 영향 - 정전발생시간을 중심으로 -)

  • Lee, DongSung;Moon, Tae-Hoon
    • Journal of Korea Planning Association
    • /
    • v.54 no.4
    • /
    • pp.122-130
    • /
    • 2019
  • The purpose of this study is to analyze effect of climate and urban factors on energy resilience, and to explore policy alternatives to strengthen resilience of energy system. For this purpose, this study used extensive literature review on resilience studies and multiple regression analysis. In this study, blackout time was set as a dependent variable. And the independent variables were divided into climate and urban (robustness, countermeasure capacity) characteristics. As a result of the analysis, in terms of climate characteristics, maximum wind speed and cooling/heating degree-day have statistically significant impact on blackout time. With regard to urban characteristics, number of consumer, ratio of deteriorated housing and coast dummy variables have statistically significant impact on blackout time. And the ratio of government employees and road ratio were found to be the most influencing factors to shorten time taken to restore original level of electricity supply. Based on the study results, several policy suggestions to improve energy resilience were made such as continuous management of vulnerable areas and strengthening disaster response services. This study only considered engineering dimension of resilience. Further studies need to be approached on ecological & social-ecological dimension.

Bypass Fat Production Using Acid Oil, Its Effect on In Vitro Rumen Fermentation and Effect of Its Feeding on In Sacco DM Disappearance in Sheep

  • Garg, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.571-574
    • /
    • 1997
  • Attempts were made in the laboratory to produce bypass fat using acid oil by precipitation and fusion methods. The degree of saponification by both of these methods was above 80 percent. Where heating facilities are not available, precipitation method could be used, otherwise, fusion method of bypass fat production is found to be more convenient, especially for commercial scale operations as handling of large volume of solutions is eliminated. Bypass fat thus produced was tested in vitro for rumen fermentation. Incorporation of acid oil in the incubation medium reduced TVFA conc. from 127.06 to 124.09 mM/l SRL and increased ammonia-N levels from 210.50 to 223 mg/l SRL indicating that the microbial activity was affected on incorporation of acid oil in the incubation medium. However, incorporation of bypass fat in the incubation medium did not significantly affect TVFA conc. as well as ammonia-N levels. In another experiment, nine rumen fistulated sheep in three groups of three each were fed bypass fat at two different levels. Dry matter disappearance in 24 h from the nylon bags suspended in the rumen of animals under different groups was found to be $47.74{\pm}1.10$, $47.55{\pm}0.21$ and $50.74{\pm}1.11$ in group I (control), group II (fed bypass fat 50 g/day) and group III (fed bypass fat 100 g/day), respectively. These studies indicated that it is possible to produce bypass fat from acid oils, a by-product of oil refining process, and its feeding did not affect rumen fermentation.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Construction of an Underground Heat Exchanger for Pig Housing (양돈용 지열교환기의 개발)

  • ;;H. J. Heege
    • Journal of Animal Environmental Science
    • /
    • v.1 no.2
    • /
    • pp.125-136
    • /
    • 1995
  • To use the earth heat for the pig housing, an underground heat exchanger has constructed in depth of 2.5m and 20m length. The temperature of the outlet air was max. 8 kelvin higher than that of inlet air in winter season. In spite of the -7$^{\circ}C$ outside temperature, it could keep the air temperature from the earth tube above zero degree. The heating performance was maximum in value of 3.25Wh/㎥ and average of 1.75Wh/㎥ by the airflow volume of 340㎥/h. The slope of relative humidity from outlet air has shown gentler than that of inlet air. By using the underground heat exchanger, it would be possible to prepare an relatively uniform relative humidity in the swine stalls. The temperatures on the earth, where PVC pipes are buried, have shown 10~12$^{\circ}C$ on March. This can reduce the difference between day and night temperature during this season by using the underground heat exchanger.

  • PDF