• Title/Summary/Keyword: Heating Condition

Search Result 1,304, Processing Time 0.027 seconds

A Prediction of the Indoor Contaminant diffusion using Network Simulation (시뮬레이션을 통한 실내 오염물질 확산의 예측 방법)

  • Kang, Ki-Nam;Song, Doo-Sam
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.311-318
    • /
    • 2006
  • CFD simulation is a tool very useful to predict the generation and absorption of the contaminant from the construction materials for the single room condition. However, there is a limit in multi-room simulation for analyzing air movement and contaminant concentration at the condition that the door of each room was closed. A lot of network simulation tool were developed which can used to analyze the mass transfer and contaminant concentration as results in the multi-room condition. However, existing network simulation method was not able to analyze the change of the heating and cooling load with the ventilation as though the change of the indoor air-pollution density was predictable. In this study, new approach to predict heating/cooling load and indoor contaminant concentration will be reviewed. New indoor contaminant concentration module reviewed in this study wad coupled with existing ESP-r network simulation method. The validity of new approach will be analysed for comparison the results of simulation and field measurement results.

  • PDF

Optimization of Resistance Spot Weld Condition for Single Lap Joint of Hot Stamped 22MnB5 by Taking Heating Temperature and Heating Time into Consideration (핫스템핑 공정에서 가열온도 및 유지시간을 고려한 22MnB5의 단일겹치기 저항 점용접 조건 최적화)

  • Choi, Hong-Seok;Kim, Byung-Min;Park, Geun-Hwan;Lim, Woo-Seung;Lee, Sun-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1367-1375
    • /
    • 2010
  • In this study, optimization of the process parameters of the resistance spot welding of a sheet of aluminum-coated boron alloyed steel, 22MnB5, used in hot stamping has been performed by a Taguchi method to increase the strength of the weld joint. The process parameters selected were current, electrode force, and weld time. The heating temperature and heating time of 22MnB5 are considered to be noise factors. It was known that the variation in the thickness of the intermetallic compound layer between the aluminum-coated layer and the substrate, which influences on the formation of nugget, was generated due to the difference of diffusion reaction according to heating conditions. From the results of spot weld experiment, the optimum weld condition was determined to be when the current, electrode force, and weld time were 8kA, 4kN, and 18 cycles, respectively. The result of a test performed to verify the optimized weld condition showed that the tensile strength of the weld joint was over 32kN, which is considerably higher than the required strength, i.e., 23kN.

Experimental Study on Heating Performance Characteristics of Air Source Heat Pump with Air to Water Type (공기열원 히트펌프의 난방 성능특성에 관한 실험적 연구)

  • Lee, Kwon-Jae;Kwon, Young-Chul;Chun, Chong-Keun;Park, Sam-Jin;Kwon, Jeong-Tae;Huh, Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.400-405
    • /
    • 2011
  • This paper presents the heating performance characteristics of the air source heat pump with air to water type. The heating capacity, COP, P-h diagram were measured at various operating conditions, air-side temperatures, relative humidities, and inlet/outlet water temperature under the standard heating condition of KS B 6275. The experimental data for the heat pump were measured using the air-enthalpy calorimeter and the constant temperature water bath. As the air-side temperature increases, the heating capacity and COP increase. The effect of the air-side relative humidities on the heat pump performance is insignificant. The heat pump performance on inlet and outlet water temperatures and air-side temperatures(-7, -11, $-15^{\circ}C$) were studied. Heating capacity and COP increased about 27~39% with the air-side temperature increasing. Enthalpy between the front and the rear of condenser decreased about 6% by increasing of the inlet water temperature. These results can be utilized in the design of the air source heat pump system with air to water type.

Preparation and Characterization of Heating Element for Inkjet Printer (잉크젯 프린터용 발열체의 제작과 특성연구)

  • 장호정;노영규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • The crystallized stable cobalt silicide$(CoSi_2)$ films were prepared on $poly-Si/SiO_2/Si$substrates for the application of inkjet printing head as a heating element with omega shape. The structural images and temperature resistance coefficient were investigated. The value of temperature resistance coefficient of the heating element was found to be about $0.0014/^{\circ}C$. The maximum power of the heating element was 2 W at the applied voltage of 2 V, 10 kHz in frequency and $1{\mu}s$ in pulse width. From the investigation of fatigue property according to the repeated applied voltages, there was no drastic changes in the resistances of heating element under the condition of $10^8$ pulsed cycles at below 15 V biased voltage. In contrast, the resistance of heating element was greatly increased at $10^6$ pulsed cycles when the heating element was operated at 17 V.

  • PDF

Human Responses to Pattern Ease of Base Layer with Abdominal Heating Pads (복부 가열 패드를 부착한 상의 베이스 레이어의 여유량에 따른 인체 반응)

  • Lee, Gyeongmi;Hong, Kyunghi;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.4
    • /
    • pp.687-697
    • /
    • 2017
  • To figure out an appropriate pressure level for a body warming base layer, human responses were observed when the pattern reduction of base layers varied. Under the condition of $2^{\circ}C$, 60% RH, 0.1m/s, ten male subjects participated in the experiment with four sizes of experimental vests where heating pads were attached. The subjective evaluations of the heating vests with different sizes were reported using 7 or 9 point scales. We simultaneously observed chest, abdomen and scapula skin temperatures and microclimate humidity. It was found that the tight pattern as in the case of A or B provided a warmer subjective sensation and skin temperature than C or D; however, there were no differences in skin temperature at the chest. Eventually, the chest temperature decreased after about 30 mins of heating; however, temperature of abdomen increased and indicated that heating with two commercial pads used was inadequate for whole body warming. The pressure sensation of 'tight' was improved after warming the abdomen in a cold environment. Overall, the gaps beyond the original circumference of the abdomen, as in C or D, were not desirable for the local heating of abdomen under the conditions of this experiment where walking was included in the protocol. The experiment garment B with nude waist circumference was the best, and D with the largest ease, was the worst for a comfortable warming vest.

A study on the solar assisted heating system with refrigerant as working fluid (냉매를 작동유체로 사용하는 태양열 난방시스템에 관한 연구)

  • Kim, Ji-Young;Ko, Gawng-Soo;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.37-44
    • /
    • 2005
  • An experimental study was conducted to analyze performance of a heating system with variation of control logic of the system. The system uses a solar as heat source and composed with heat pump that uses R-22 as working fluid. The difference between the developed system and the commercially available heating system is working fluid. The solar assisted heating system which was widely distributed in the market uses water as a working fluid. It could be freezing in case of the temperature drops down under freezing point. The anti-freezing fluids such as methyl-alcohol or ethylene-glycol are mixed with the water to protect the freezing phenomena. However, the system developed in this study uses a refrigerant as a working fluid. It makes the system to run under zero degree temperature conditions. Another difference of the developed system compare with commercial available one is auxiliary heating method. The developed system has removed an auxiliary electric heater that has been used in conventional solar assisted heating system. Instead of the auxiliary electric heater, an air source heat exchanger which generally used as an evaporator of a heat pump was adapted as a backup heating device of the developed system. As results, an efficiency of the developed system is higher than a solar assisted heat pump with auxiliary electric heater. The merit of the developed system is on the performance increment when the system operates at a lower solar energy climate conditions. In case of the developed system operates at a normal condition, COP of the solar collector driven heat pump is higher than the air source heat exchanger driven heat pump's.

Influence on the Thermal Environment by Change of Indoor-air Volume of Plastic Greenhouse with Hot Air Heating Systems (온풍난방을 채용한 3연동 플라스틱 하우스의 실내공기용적 변화가 하우스 온열환경에 미치는 영향)

  • Jeon, Sam-Chae;Li, Chang-Su;Na, Su-Yeun;Huh, Jong-Chul;Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • Relatively being economical in installation and easy in operation, hot-air heating system has been generally used in greenhouse for heating system regardless of high cost in maintenance and uneven distribution of air temperature. Therefore to overcome the disadvantages in maintenance and in distribution of air temperature and to improve efficiency of heating system, this experimental study is performed. This experimental study aims to improve the character of uneven temperature distribution in vertical direction and to reduce energy consumption for heating in a greenhouse. The experiment had been performed to investigate change of thermal environment and effects on reducing energy consumption for heating in greenhouse by additional surface insulation and reduction of indoor-air volume that come by installing transparent vinyl membranes with different height in each house. The results show that there is a wide difference in oil-energy consumption between houses according to condition of surface insulation and change of indoor-air volume. Furthermore, the results show that the efficiency of dual surface is higher than that of change of indoor-air volume in terms of energy saving.

Development of exothermic system based on internet of things for preventing damages in winter season and evaluation of applicability to railway vehicles

  • Kim, Heonyoung;Kang, Donghoon;Joo, Chulmin
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.653-660
    • /
    • 2022
  • Gravel scattering that is generated during operation of high-speed railway vehicle is cause to damage of vehicle such as windows, axle protector and so on. Especially, those are frequently occurred in winter season when snow ice is generated easily. Above all, damage of vehicle windows has not only caused maintenance cost but also increased psychological anxiety of passengers. Various methods such as heating system using copper wire, heating jacket and heating air are applied to remove snow ice generated on the under-body of vehicle. However, the methods require much run-time and man power which can be low effectiveness of work. Therefore, this paper shows that large-area heating system was developed based on heating coat in order to fundamentally prevent snow ice damage on high-speed railway vehicle in the winter season. This system gives users high convenience because that can remotely control the heating system using IoT-based wireless communication. For evaluating the applicability to railroad sites, a field test on an actual high-speed railroad operation was conducted by applying these techniques to the brake cylinder of a high-speed railroad vehicle. From the results, it evaluated how input voltage and electric power per unit area of the heating specimen influences exothermic performance to draw the permit power condition for icing. In the future, if the system developed in the study is applied at the railroad site, it may be used as a technique for preventing all types of damages occurring due to snow ice in winter.

A Study on the Effect of Envelope Factors on Cooling, Heating and Lighting Energy Consumption in Office Building (사무소 건물의 외피요소가 냉난방 및 조명에너지 소비에 미치는 영향에 관한 연구)

  • Son, Chang-Hee;Yang, In-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.8-17
    • /
    • 2012
  • The objective of this study is to perform an analysis of the heat(heating and cooling) and lighting energy consumption according to the window area ratio and the application of horizontal louver, which is external shading device installed for the purpose of energy savings in office buildings. For this, a building was chosen as a typical example, and the heat and lighting energy consumption was calculated by using the daylight and building energy analysis simulation. The results showed that the total energy consumption, when the lighting control was applied, was reduced by an average of 11.49[%] compared to when there was no lighting control. The smaller the glazing ratio is, the less the total energy consumption is. Also, the application of the horizontal louver increases the total energy consumption under the same condition of glazing ratio.

A Study on the Evaluation of Heating-Conditioned Environment with the Size of Classroom - Focused on Inlet Temperature of Ceiling Type Air-Conditioning System - (교실 규모에 따른 난방 공조환경 평가에 관한 연구 -천장형 냉난방기의 취출온도를 중심으로 -)

  • 최정민;김용이;박효석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1035-1042
    • /
    • 2003
  • As the desire for a better condition in classroom increases, the distribution rate of warming and cooling conditioners increases. But it is known that according to the way by which the equipments put and are operated the comfortableness felt by persons who are in classroom can make a difference. Therefore, proper equipments in accordance with the size of classroom should be considered as well as operational methods when ceiling warming and cooling conditioners put. This study makes conclusions as follows through a simulation to get improvements in accordance with the size of classroom and to improve the heating performance of ceiling warming and cooling conditioners in classroom.