• Title/Summary/Keyword: Heater Set-point

Search Result 14, Processing Time 0.025 seconds

Investigation of Structural Reliability on Solder Joint According to Heater Set-point of the Lunar Lander (달 착륙선의 히터 작동온도 설정에 따른 솔더 접합부의 구조적 신뢰성 분석)

  • Jeon, Young-Hyeon;Park, Tae-Yong;Lee, Jang-Joon;Kim, Jung-Hoon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.167-174
    • /
    • 2018
  • The heater is applied to the lunar lander for securing its survivability under severe lunar thermal environment during 14 days of night time. For this, the heater on/off set-points shall be determined to minimize the power consumption due to the limited power generation of lunar lander during night time. In addition, the temperature changes of the lander according to the heater set-point is also an important factor because it is related to thermo-mechanical reliability on solder joint of on-board electronics. In this study, we investigated thermo-mechanical reliability on solder joint according to the heater set-point by using commercial reliability and a life prediction tool of Sherlock based on the thermal analysis results of lunar lander that is a year of the mission lifetime.

Simulation of Fuzzy Logic Controller for Food Extrusion Process (압출성형공정 퍼지제어기의 모의실험)

  • Lee, Seung-Ju;Won, Chee-Sun;Han, Ouk;Mok, Chul-Kyoon;Lee, Byeong-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.164-169
    • /
    • 1995
  • Fictitious experiment to control extrusion process was carried out using the fuzzy theory. Algorithm of the fuzzy logic controller(FLC) was made based on the general principles of extrusion. In the simulation, at first, thickness of extrudate was measured as feedback input variable. Secondly, a set point of screw speed was determined as output variable of extruder operating condition through FLC. Finally, the thickness of extrudate was controlled as a given set point. Barrel heater was simply controlled as on/off state, which was not fuzzy controlled.

  • PDF

Investigation of the Heterogeneous Decomposition of Ammonia in an Inverted, Stagnation-point Flow Reactor (전도된 정체점 흐름을 갖는 반응기에서 암모니아의 비균질 분해 반응 연구)

  • Hwang, Jang Y.;Anderson, Tim
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.287-291
    • /
    • 2009
  • The heterogeneous decomposition of ammonia on a quartz surface in an inverted, stagnation-point flow reactor was investigated using a measurement reactor and a numerical model of the reactor. In the experiments, 8 mole% of ammonia in nitrogen was used and the temperature of an electric heater was set in the range $300{\sim}900^{\circ}C$ to heat the quartz surface where the decomposition took place. Gas temperatures and ammonia concentrations in the reactor obtained using in situ Raman spectroscopy were analyzed with the numerical model and it was revealed that, depending on the heater temperature, the temperature of the quartz surface was estimated to be in the range $235{\sim}619^{\circ}C$ and the activation energy of the decomposition on the surface was in the range 10.9~15.8 kcal/mol.

Methods for Adding Demand Response Capability to a Thermostatically Controlled Load with an Existing On-off Controller

  • Jin, Young Gyu;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.755-765
    • /
    • 2015
  • A thermostatically controlled load (TCL) can be one of the most appropriate resources for demand response (DR) in a smart grid environment. DR capability can be effectively implemented in a TCL with various intelligent control methods. However, because traditional on-off control is still a commonly used method in a TCL, it is useful to develop a method for adding DR capability to the TCL with an existing on-off controller. As a specific realization of supervisory control for implementing DR capability in the TCL, two methods are proposed - a method involving the changing of a set point and a method involving the paralleling of an identified system without delay. The proposed methods are analyzed through the simulations with an electric heater for different power consumption levels in the on-state. Considerable cost benefit can be achieved with the proposed methods when compared with the case without DR. In addition, the observations suggest that a medium power consumption level, instead of the maximum power, in the on-state should be used for consistently obtaining the cost benefit without severe temperature deviation from the specified temperature range for DR.

A Sensorless and Versatile Temperature-Control System for MEMS Microheaters (온도센서를 사용하지 않는 MEMS 마이크로히터 온도제어시스템)

  • Bae, Byung-Hoon;Yeon, Jung-Hoon;Flachsbart Bruce R.;Shannon Mark A.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.544-547
    • /
    • 2006
  • In this paper, we present a temperature-controlled system for MEMS electrical resistance heaters without a temperature sensor. To rapidly control the heater temperature, the microheater system developed consists of a power supply, power amplifier, digital ${\underline{P}}roportional-{\underline{I}}ntegral-{\underline{D}}ifferential$ (PID) controller, and a quarter bridge circuit with the microheater and three resistors are nominally balanced. The microheaters are calibrated inside a convection oven to obtain the temperature coefficient with a linear or quadratic fit. A voltage amplifier applies the supply voltage proportional to the control signal from the PID controller. Small changes in heater resistance generate a finite voltage across the quarter bridge circuit, which is fed back to the PID controller to compare with the set-point and to generate the control signal. Two MEMS microheaters are used for evaluating the developed control system - a NiCr serpentine microheater for a preconcentrator and a Nickel microheater for ${\underline{P}}olymerase\;{\underline{C}}hain\;{\underline{R}}eaction$ (PCR) chip.

Detailed Measurement of Flow and Heat Transfer Downstream of Rectanglar Vortex Generators Using a Transient Liquid Crystal Technique (과도 액정 기법을 이용한 와동발생기 하류의 유동장 및 열전달 측정)

  • Hong, Cheol-Hyun;Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1618-1629
    • /
    • 2003
  • The effects of the interaction between flow field and heat transfer caused by the longitudinal vortices are experimentally investigated using a five hole probe and a transient liquid crystal technique. The test facility consists of a wind tunnel with vortex generators protruding from a bottom surface and a mesh heater. In order to control the strength of the longitudinal vortices, the angle of attack of vortex generators used in the present experiment is 20$^{\circ}$, and the spacing between the vortex generators is 25mm. The height and cord length of the vortex generator is 20mm and 50mm, respectively. Three-component mean velocity measurements are made using a f-hole probe system, and the surface temperature distribution is measured by the hue capturing method using a transient liquid crystal technique. The transient liquid crystal technique in measuring heat transfer has become one of the most effective ways in determining the full surface distributions of heat transfer coefficients. The key point of this technique is to convert the inlet flow temperature into an exponential temperature profile using the mesh heater set up in the wind tunnel. The conclusions obtained in the present experiment are as follows: The two maximum heat transfer values exist over the whole domain, and as the longitudinal vortices move to the farther downstream region, these peak values show the decreasing trends. These trends are also observed in the experimental results of other researchers to have used the uniform heat flux method.

Freeze Protection for Passive Solar Water Heating System (자연순환형 태양열온수기 동파방지기술)

  • Kim, Jong-Hyun;Hong, Hi-Ki;Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.327-333
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and shortage of excessive electric power consumption. In the experimental device, hot water in storage tank was used to heat the outlet pipe from the tank if the pipe surface temperature falls lower than a set point. The cold water pipe to the storage tank was installed to directly contact the hot water pipe surface temperature rose by transferred heat.

Freeze Protection for Passive Solar Water Heating System in Bitter Cold Areas (혹한기 지역에서의 자연순환형 태양열 시스템 동파방지)

  • Kwon, Jae-Wook;Kim, Jong-Hyun;Hong, Hi-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.41-46
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and excessive electric power consumption. In the experimental device, hot water in a storage tank was circulated by a small pump and used to heat the outdoor pipes if the cold water pipe surface temperature falls lower than a set point. As a result, It was observed that there was no hot water waste while the solar water heating system operated without freeze and burst.

A Review of EOS Thermal Control Logic for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Youn H.S.;Paik H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.452-455
    • /
    • 2004
  • MSC (Multi-Spectral Camera) system is a remote sensing instrument to obtain high resolution ground image. EOS (Electro-Optic System) for MSC mainly consists of PMA (Primary Mirror Assembly), SMA (Secondary Mirror Assembly), HSTS (High Stability Telescope Structure) and DFPA (Detector Focal Plane Assembly). High performance of EOS makes it possible for MSC system to provide high resolution and high quality ground images. Temperature of the EOS needs to be controlled to be in a specific range in order not to have any thermal distortion which can cause performance degradation. It is controlled by full redundant CPU based electronics. The validity of thermistor readings can be checked because a few thermistors are installed on each control point on EOS. Various kinds of thermal control logics are used to prevent 'Single Point Failure'. Control logic has a few set of database in order not to be corrupted by SEU (Single Event Upset). Even though the thermal control logic is working automatically, it can also be monitored and controlled by ground-station operator. In this paper, various ways of thermal control logic for EOS in MSC will be presented, which include thermal control mode and logic, redundancy design and status monitoring and reporting scheme.

  • PDF