• Title/Summary/Keyword: Heater Orientation

Search Result 11, Processing Time 0.022 seconds

An Experimental Study on Direct Cooling Performance using Pool Boiling from Micro-Porous Coated Surface (마이크로다공성 코팅된 발열체에서의 풀비등 직접냉각 성능에 관한 실험적 연구)

  • Kim, Tae-Gyun;Lee, Kyu-Jung;Kim, Yong-Chan;Park, Chan-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1353-1358
    • /
    • 2004
  • An experimental study of pool boiling behavior on micro-porous enhanced square heater surfaces immersed in PF5060 is performed. The effects of heater orientation, Subcooling and substrate distance on the pool boiling heat transfer performance for the double heaters were investigated under increasing heat-flux conditions. The boiling performance of micro-porous coated surface was better than that of plain surface. The double heaters with upper substrate of 0.2cm substrate interval have lower boiling performances compared with the results for the double heaters with that of 0.5cm and 1.0cm substrate interval and without the substrate. In comparison to upper heater and below heater with orientation, the upper heater has lower superheat temperature than the below heater due to the bubble sweeping.

  • PDF

Experimental study of bubble behaviors and CHF on printed circuit board (PCB) in saturated pool water at various inclination angles

  • Tanjung, Elvira F.;Alunda, Bernard O.;Lee, Yong Joong;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1068-1078
    • /
    • 2018
  • Experiments were performed to investigate bubble behaviors and pool boiling Critical Heat Flux (CHF) on a thin flat rectangular copper heater fabricated on Printed Circuit Board (PCB), at various inclination angles. The surface inclination angles were $0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, and $180^{\circ}$. Results showed the Onset of Nucleate Boiling (ONB) heat flux increased with increasing heater orientation from $0^{\circ}$ to $90^{\circ}$, while early ONB occurred when the heater faced downwards ($135^{\circ}$ and $180^{\circ}$). The nucleate boiling was observed to be unstable at low heat flux (1-21% of CHF) and changed into typical boiling when the heat flux was above 21% of CHF. The result shows the CHF decreased with increasing heater orientation from $0^{\circ}$ to $180^{\circ}$. In addition, the bubble departure diameter at the heater facing upwards ($0^{\circ}$, $45^{\circ}$, and $90^{\circ}$) was more prominent compared to that of the heater facing downward ($135^{\circ}$). The nucleation site density also observed increased with increasing heat flux. Moreover, the departed bubbles with larger size were observed to require a longer time to re-heat and activate new nucleation sites. These results proved that the ONB, CHF, and bubble dynamics were strongly dependent on the heater surface orientation.

Characteristics of Cooling for the Adjacent Double Micro-Porous Coated Surfaces in PE5060 (마이크로다공성 코팅된 인접 복수 발열체에 대한 PF5060의 냉각 특성)

  • Kim Tae-Gyun;Kim Yoon-Ho;Lee Kyu-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.646-655
    • /
    • 2006
  • The present research is an experimental study on characteristics of cooling behavior for the adjacent copper blocks with surface roughness or micro-porous coated surface. The experiments were carried out at saturation state or within subcooled states of PF5060. The effects of heater orientation and the intervals between heating surfaces or substrates were investigated under various heat flux conditions. The boiling performance of copper block with micro-porous coated surface was better than that of copper block with surface roughness. It is understood that the bubble sweeping enhances boiling performance for the heaters with inclinations of $\theta=45^{\circ}\;and\;\theta=90^{\circ}$, where as the bubble flattening decreases boiling performance for the heaters with inclinations of $\theta=135^{\circ}\;and\;\theta=180^{\circ}$. In comparison to upper heater and below heater with orientation, the upper heater has lower superheat temperature than the below heater due to the bubble sweeping. It is also found that boiling performance decreases in the case of adjacent double heaters with only 0.2cm substrate interval.

Numerical investigation of steady state characteristics and stability of supercritical water natural circulation loop of a heater and cooler arrangements

  • Rai, Santosh Kumar;Kumar, Pardeep;Panwar, Vinay
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3597-3611
    • /
    • 2021
  • The present paper studies the thermal-hydraulic behaviour of the rectangular supercritical natural circulation loop (SCNCL) using numerical model of one dimensional. Then the results of this model is confirmed with experimental and benchmark results. Variations with several geometric parameters like loop diameter, riser length, and heater length and operating conditions like heater inlet enthalpy, pressure, friction factor, and inlet and exit loss coefficient on steady-state performance are investigated for various orientations like HHHC, HHVC, VHVC and VHHC of the heater and cooler. The chances of existing static instability (Ledinegg excursion) has been investigated, which reveals that it can arise only in a low inlet enthalpy condition, far from the suggested various orientations of heater and cooler.

Thermal Performance of the Bubble Jet Loop Heat Pipe Using Eccentric Heater in Evaporating Section (증발부에 편심 가열부를 사용한 버블젯 루프 히트파이프의 열성능)

  • Kim, Jong-Soo;Kim, Sung-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.652-658
    • /
    • 2015
  • The Bubble Jet Loop Heat Pipe (BJLHP) is designed to operate in the horizontal orientation. The motion of the bubble generated by boiling working fluid on a heater surface in the evaporating section of the BJLHP helps the working fluid transfer heat to the condensing portion. In this study, we changed the position of the heater in the evaporating section from concentric to eccentric. The concentric heater is located at the center of the tube in the evaporating part, and the eccentric heater is located at the bottom of the inner surface of the same tube. We used R-134a as the working fluid, and the charging ratio was 50%vol. We measured the temperatures of the evaporating and condensing sections by changing the input electric power from 50 W to 200 W, measuring every 50 W. The results of the experiment show that the effective thermal conductivity of BJLHP using an eccentric heater is four times higher than the BJLHP obtained using a concentric heater. Additionally, we conducted a visualization experiment on the evaporating portion of BJLHP to determine why the effective thermal conductivity was higher. The working fluid was water, and we took pictures of the flow visualization for BJLHP. Nucleate boiling with the eccentric heater was more intense and generated more bubbles. Therefore, the eccentric heater was more saturated by the liquefied working fluid.

An Experimental Study on Boiling Heat Transfer of PF5060 on the Shape and Orientation of Micro-Fin Surfaces (마이크로휜 표면과 발열체 기울기에 따른 PE5060의 비등 열전달에 관한 실험적 연구)

  • Kim Yoon-Ho;Kim Choong;Lee Kyu-Jung;Kim Youngchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.74-81
    • /
    • 2006
  • Experiments to measure the pool boiling heat transfer on the micro-fin surfaces were performed with PF5060. The effects of various orientation and subcooling of heat surface on pool boiling performance were investigated under various heat-flux conditions for plain and micro-fin surfaces. The comparison between the results of this study and those of previous work shows a similar trend at the same conditions. From the results, it is proved that nucleate boiling performance is strongly dependent on the orientation, the micro-fin structure and the subcooling of heat surface. The heat flux on the surface with orientation angles of $45^{\circ}$ and $90^{\circ}$ was larger than that on horizontal surface(${\theta}=0^{\circ}$) at same wall superheat because of the effect of bubble sweeping. The nucleate boiling performance of micro-fin surfaces is enhanced by decreasing the fin size(WxL) and the pitch, respectively. The subcooling makes nucleate boiling performance lower for both micro-fin and plain surfaces.

Penetration Characteristic of CFRP laminate shell by the curvature -A focus of fracture mode by the penetration- (곡률을 고려한 CFRP 복합재 적층쉘의 관통특성 -관통에 의한 파괴모드를 중심으로-)

  • 조영재;김영남;심재기;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1434-1439
    • /
    • 2004
  • CFRP composite materials have wide application in structure materials of airplane, ships, and aero space vehicles because of their high strength and stiffness. This paper is to study the effects of curvature and orientation angle on the penetration characteristics of CFRP laminate shell. They are staked with 8 Ply specimens [0$_2$/90$_2$]$_{s}$, [0/90$_2$/0]$_{s}$ and the stacked of outer plates degree with 12 Ply specimens [0$_3$/90$_3$]$_{s}$, [0$_2$/90$_2$/0]$_{s}$ and [90$_3$/0$_3$], [90$_2$/0$_2$/90]S. They are manufactured to varied curvature radius (R=100,150,200mm and $\infty$). They are cured by heating to the appropriate harding temperature(13$0^{\circ}C$) by mean of a heater at the vaccum bag of the autoclave. Test specimens were prepared with dimensions 100mm$\times$140mm. When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determining the time for it to pass two ballistic-screen sensor located a known distance apart. In general, kinetic energy after impact-kinetic energy before impact rised in all specimens. This study observed a fracture mode inside the specimen after a penetration test using a digital camera and it examined a fracture mode and a penetration mode to stack of outer orientation angle and curvature.rvature.

  • PDF

Pool-Boiling Critical Heat Flux of Water on Small Plates: Effects of Surface Orientation and Size

  • Yang, Soo-Hyung;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.337-342
    • /
    • 1996
  • The pool-boiling critical heat flux (CHF) of water on small flat plates has been experimentally investigated focusing on the effects of the inclination angle and size of the heated surface under near atmospheric pressure. The second-phase experiment was accomplished to find out the general CHF behavior for over-all inclination angles from -90$^{\circ}$ to 90$^{\circ}$using two plate-type test sections (30$\times$150 mm and 40$\times$150 mm) submerged in a slightly subcooled water pool. Test results generally confirm the first-phase findings and show little effect of inclination angle for inclined upward-facing cases. CHF position moves to lower position with the increase of the heater characteristic size and inclination angle(from -30$^{\circ}$to 60$^{\circ}$).

  • PDF

Numerical analysis in oscillating flow considering orientation of porous media regenerator (다공성 재생기의 방향성을 고려한 왕복유동 수치해석)

  • Yang, Mun-Heum;Park, Sang-Jin;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1668-1678
    • /
    • 1997
  • Numerical analyses were performed to investigate the characteristics of regenerator in oscillating flow by using moving boundary method and Darcy model. In this work, periodic adiabatic boundary condition was suggested as the boundary condition of adiabatic part so that the effects of the thermal inertia of the wall could be considered. In carrying out numerical analyses, two models were applied and compared. One called isotropic model has the same thermal conductivity in radial and axial directions within a porous media. The other called aeolotropic model has different conductivity in each directions. Isotropic model could not show the advantage of energy reduction which needs to maintain constant wall temperature difference between heater and cooler. But aeolotropic model could simulate the reduction of energy consumption.

Fabrication and Characterizations of ITO Film as a Transparent Conducting Electrode for PDP Application (PDP 투명전극의 응용을 위한 ITO 박막의 제작평가)

  • Park, Kang-Il;Lim, Dong-Gun;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.788-791
    • /
    • 2002
  • Tin doped indium oxide(ITO) films are highly conductive and transparent in the visible region whose property leads to the applications in solar cell, liquid crystal display, thermal heater, and other sensors. This paper investigated ITO films as a transparent conducting films for application of PDP. ITO films were grown on glass substrate by RF magnetron sputtering method. To achieve high transmittance and low resistivity, we examined the various film deposition such as substrate temperature, gas pressure, annealing temperature, and deposition time. We recommend the substrate temperature of $500^{\circ}C$ and post annealing of $200^{\circ}C$ in $O_2$ atmosphere for good conductivity and transmittance. From XRD examination, ITO films showed a preferred(222) orientation. As substrate temperature increased from RT to $500^{\circ}C$, the intensity of the (222) peak increased. The highest peak intensity was observed at a substrate temperature of $500^{\circ}C$. with the optimum growth conditions, ITO films showed resistivity of $1.04{\times}10^{-4}{\Omega}-cm$ and transmittance of 81.2% for a film 300nm thick in the wavelength range of the visible spectrum.

  • PDF