• Title/Summary/Keyword: Heat-pressing procedure

Search Result 3, Processing Time 0.019 seconds

FLEXURE STRENGTH AND MICROSTRUCTURE OF IPS EMPRESS 2 GLASS-CERAMIC ON HEAT-PRESSING AND HEAT TREATMENTS (열가압 및 열처리에 따른 IPS Empress 2 세라믹의 굴곡강도와 미세구조)

  • Oh, Sang-Chun;Dong, Jin-Keun;Luthy, Heinz;Scharer, Peter
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.575-582
    • /
    • 2000
  • This investigation was designed to determine whether heat-pressing and/or simulated heat treatments affected the flexure strength and the microstructure of the lithium disilicate glass-ceramic in the IPS Empress 2 system. Four groups of the specimens were prepared as follows: group 1 - as-received material, group 2 - heat-pressed material; group 3 - heat-pressed and simulated initial heat-treated material; group 4 - heat-pressed and the simulated heat-treated material with full firings for a final restoration. The three-point bending test and the scanning elec-tron microscope (SEM) analysis was conducted for the purpose of this study. The flexure strength of group 2 was significantly higher than that of group 1. However, there were no significant differences in strength among group 2, 3, and 4, and between group 1 and 4. The SEM micrographs of the lithium disilicate glass-ceramic showed the closely packed, multi-directionally interlocking microstructure of numerous lithium disilicate crystals protruding from the glass matrix. The crystals of the heat-pressed materials (group 2, 3, and 4) were a little denser and about two times bigger than those of the as-received material (group 1). This change of microstructure is more obviously exhibited particularly between group 1 and 2. However, there was no a marked difference among group 2, 3, and 4 after the heat-pressing procedure. Although there were significant increase of the strength and some changes of the microstructure after the heat-pressing operation, the combination of the heat-pressing and the simulated subsequent heat treatments did not produce the increase of strength of IPS Empress 2 glass-ceramic.

  • PDF

Power Generating Characteristics of Anode-Supported SOFC fabricated by Uni-Axial Pressing and Screen Printing (일축가압/스크린인쇄 공정에 의해 제조된 음극지지형 SOFC의 출력특성)

  • 정화영;노태욱;김주선;이해원;고행진;이기춘;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.456-463
    • /
    • 2004
  • To enhance the performance of anode-supported SOFC, single cell fabrication procedure was changed for better and resulting power generating characteristics of single cell were investigated. Liquid condensation process was employed for the granulation of NiO/YSZ powder mixture and the produced powder granules were compacted into anode green substrate by uni-axial pressing. YSZ electrolyte was printed on green substrate via screen-printing method and co-fired at 1400$^{\circ}C$ for 3 h. LSM/YSZ composite cathode of which the composition and heat treatment condition was adjusted to minimize the polarization#resistance with AC-impedance spectroscopy, was screen printed. The final single cell size from this multi-step procedure was 5${\times}$5 $\textrm{cm}^2$ and 10${\times}$10 $\textrm{cm}^2$. The maximum power densities of 5${\times}$5 and 10${\times}$10 single cells were about 0.45 W/$\textrm{cm}^2$ and 0.22 W/$\textrm{cm}^2$ at 800$^{\circ}C$, which are two times superior than those from single cells fabricated by the conventional process in previous our work.

A Study on the Multi-row Progressive Die for Thin Sheet Metal Forming by Computer Simulation

  • Sim, Sung-Bo;Kim, Chung-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.75-80
    • /
    • 2008
  • The progressive die performs a work of sheet metal processes with a piercing, notching, embossing, bending, drawing, cut-off etc. in many kinds of pressing. Now a days, these processes have been evaluated as a advanced tooling method to increase the productivity and high quality assurance. The first step analyzing of die design is production part review, then the arrangement drawing of product design and strip process layout design should be done as a next steps with a FEM simulation for its problem solution. After upper procedure were peformed, it was started to make the die, then tryout and its revision of the die and product quality, safety, productivity etc. were done continually. For the all of these process, we mobilized the theory and practice of sheet metal forming, die structure, the function and activity of die components, and the others of die machining, die material, heat treatment and know‐how so on. In this study the features of representative are production part analyzing through the FEM simulation of bending area with a considering spring back problem by DEFORM.

  • PDF