• 제목/요약/키워드: Heat-loss

검색결과 2,102건 처리시간 0.034초

단일필라멘트와 다중필라멘트 초전도 코일의 교류 전류에 의한 발열 특성 비교 평가 (A Comparison Study of Heat Loss Characteristics in Monofilament and Multifilament Superconducting Coils Driven with AC Currents)

  • 황성민;김기웅;강찬석;이성주;이용호
    • Progress in Superconductivity
    • /
    • 제13권2호
    • /
    • pp.111-116
    • /
    • 2011
  • Since superconducting wires have no resistance, electromagnets based on the superconducting wires produce no resistive heating with DC current as long as the current does not exceed the critical current of the wire. However, unlike resistive wires, superconducting wires exhibit AC heat loss. Embedding fine superconducting filaments inside copper matrix can reduce this AC loss to an acceptable level and opens the way to AC-capable superconducting coils. Here, we introduce an easy and accurate method to measure AC heat loss from sample superconducting coils by measuring changes in the rate of gas helium outflow from the liquid helium dewar in which the sample coil is placed. This method provides accurate information on total heat loss of a superconducting coil without any size limit, as long as the coil can fit inside the liquid helium dewar. With this method, we have evaluated AC heat loss of two superconducting solenoids, a 180-turn solid NbTi wire with 0.127 mm diameter (NbTi coil) and a 100-turn filamented wire with 1.4 mm diameter where 7 NbTi filaments were embedded in a copper matrix with copper to NbTi ratio of 6.7:1 (NbTi-Cu coil). Both coils were wound on 15 mm-diameter G-10 epoxy tubes. The AC heat losses of the NbTi and NbTi-Cu coils were evaluated as $53{\pm}4.7\;{\mu}W/A^2Hzcm^3$ and $0.67{\pm}0.16\;{\mu}W/A^2Hzcm^3$, respectively.

미소 중력장에 있는 저신장율 화염소화에 미치는 다차원 효과 (Multi-Dimensional Effects on a tow Strain Rate Flame Extinction Under Microgravity Environment)

  • 오창보;김정수;;박정
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.988-996
    • /
    • 2005
  • Flame structure and extinction mechanism of counterflow methane/air non-premixed flame diluted with nitrogen are studied by NASA 2.2 s drop tower experiments and two-dimensional numerical simulations with finite rate chemistry and transport properties. Extinction mechanism at low strain rate is examined through the comparison among results of microgravity experiment, 1D and 2D simulations with a finite burner diameter. A two-dimensional simulation in counterflow flame especially with a finite burner diameter is shown to be very important in explaining the importance of multidimensional effects and lateral heat loss in flame extinction, effects that cannot be understood using a one-dimensional flamelet model. Extinction mechanism at low strain rate is quite different from that at high strain rate. Low strain rate flame is extinguished initially at the outer flame edge, the flame shrinks inward, and finally is extinguished at the center. It is clarified from the overall fractional contribution by each term in energy equation to heat release rate that the contribution of radiation fraction with 1D and 2D simulations does not change so much and the overall fractional contribution is decisively attributed to radial conduction ('lateral heat loss'). The experiments by Maruta et at. can be only completely understood if multi-dimensional heat loss effects are considered. It is, as a result, verified that the turning point, which is caused only by pure radiation heat loss, has to be shifted towards much lower global strain rate in microgravity flame.

Development of On-site Heat Loss Audit and Energy Consulting System for Greenhouse

  • Kwon, Jin Kyung;Kang, Geum Choon;Lee, Seong Hyun;Sung, Je Hoon;Yun, Nam Kyu;Moon, Jong Pil;Lee, Su Jang
    • Journal of Biosystems Engineering
    • /
    • 제38권4호
    • /
    • pp.287-294
    • /
    • 2013
  • Purpose: Greenhouses for a protected horticulture covered with a plastic or glass are easy to have weakness in a heat loss by deterioration, damage, poor construction, and so on. To grasp the vulnerable points of heat loss of the greenhouses is important for heating energy saving. In this study, an on-site heat loss audit and energy consulting system were developed for an efficient energy usage of a greenhouse. Method: Developed system was mounted with infrared thermal and visual cameras to grasp the heat loss from the greenhouse quickly and exactly, and a trial calculation program of heating load of greenhouse to provide farmers with the information of heating energy usage. Results: Developed system could print out the reports about the locations and causes of the heat losses and improvement methods made up by an operator. The mounted trial calculation program could print out the information of the period heating load and fuel cost according to the conditions of greenhouse and cultivation. The program also mounted the databases of the information on the 13 horticultural energy saving technologies developed by the Korea Rural Development Administration and simple economic analysis sub-program to predict the payback period of the technologies. Conclusion: The developed system was expected to be used as the basic equipment for an instructors of district Agricultural Technology and Extension Centers to conduct the energy consulting service for the farmers within the jurisdiction.

H2/CO 합성가스의 연소 특성에 관한 연구 (Study on Combustion Characteristics of H2/CO Synthetic Gas)

  • 김태권;박정;조한창
    • 한국환경과학회지
    • /
    • 제17권6호
    • /
    • pp.689-698
    • /
    • 2008
  • Numerical study is conducted to predict effects of radiative heat loss and fuel composition in synthetic gas diffusion flame diluted with $CO_2$. The existing reaction models in synthetic gas flames diluted with $CO_2$ are evaluated. Numerical simulations with and without gas radiation, based on an optical thin model, are also performed to concrete impacts on effects of radiative heat loss in flame characteristics. Importantly contributing reaction steps to heat release rate are compared for synthetic gas flames with and without $CO_2$ dilution. It is also addressed that the composition of synthetic gas mixtures and their radiative heat losses through the addition of $CO_2$ modify the reaction pathways of oxidation diluted with $CO_2$.

積層材料의 熱擴散係數測定을 위한 軸對稱 二次元 熱擴散方程式의 解析 (An Analysis of Axisymmetric Two Dimensional Heat Diffusion Equation to Measure the Thermal Diffusivity of Layered Materials)

  • 김진원;이흥주
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.349-356
    • /
    • 1986
  • 본 논문에서는 열손실에 의한 오차를 배제하기 위하여 원판형시편의 전후면에 서의 열손실과 반경방향의 열손실을 고려하고 2층으로 된 적층재료의 열확산방정식을 Green함수를 이용하여 해석하므로서 피복재료들의 열물성치를 정확하게 측정하기 위한 임의의 축대칭 열원의 펄스를 사용하여 열손실 및 펄스시간의 효과에 의한 오차를 최 소화 할 수 있는 방법을 제시 하고자 한다.

고온용 태양열 복합 흡수기의 열특성 분석 연구 (A Study on Thermal Characteristics of Hybrid Solar Receiver for Dish Concentrating System)

  • 강명철;김진수;강용혁;김낙주;유성연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.571-575
    • /
    • 2006
  • To improve economic of solar power generation, stirling engine is required continuous operation and the receiver has to be provided with an additional combustion system. The hybrid receiver with a specially adapted combustion system is possible to 24 hr/day operation by solar and gas-fired. The inner cavity and external wall serve as absorber surfaces using collected irradiation and heat transfer surfaces for the gas heat flow, respectively. The hybrid receiver was designed and fabricated for the dish/stirling system. The analytical method for pridicting natural convective heat loss from receiver is used. The Koenig and Marvin model is used to estimate convection heat loss and heat transfer coefficiency.

  • PDF

저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동 (Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames)

  • 박준성;김현표;박정;김정수;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

저신장율 에지 화염의 진동 불안정성 (Oscillatory Instability of Low Strain Rate Edge Flame)

  • 김강태;박준성;김정수;오창보;길상인;박정
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.343-349
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral flame size was less than burner nozzle diameter and thus lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The oscillation is the direct outcome from the advancing and retreating edge flame. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which can be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

치관 전장용 레진의 내마모성에 대한 비교연구 (A COMPARATIVE STUDY ON THE WEAR RESISTANCE OF POLYMERIC VENEERING MATERIALS)

  • 윤수선;이선형;양재호;장완식
    • 대한치과보철학회지
    • /
    • 제24권1호
    • /
    • pp.33-43
    • /
    • 1986
  • The purpose of this study was to compare the wear resistance of heat pressure-cured microcomposite(SR-Isosit-N), photo-cured microcomposite(Dentalcolor), unfilled heat-cured resin(Thermojel) and that of human enmel. Specimens were made with specially designed die and finally polished with #3,000 diamond paste. After 100,000 strokes of tooth brushing at electric tooth-brushing machine, mean thickness loss of each specimen was measured by using surface profile and integration. The results were as follows 1. Mean thickness loss were $84.3{\pm}27.3{\mu}m$ in unfiled heat-cured resin, $9.4{\pm}2.5{\mu}m$ in photocured microcomposite, $7.6{\pm}2.1{\mu}m$ in heat.pressure-cured microcomposite and $0.97{\pm}0.42{\mu}m$ in enamel. 2. Heat.pressure-cured microcomposite and photo-cured microcomposite had no difference in mean thickness loss(p>0.05). 3. Unfilled resin and microcomposite had much differences in mean thickness loss (p<0.005). 4. ha resins used in this experiment had too much mean thickness loss as compared with enamel (p<0.005).

  • PDF

직경이 변하는 원통형 Pin 핀의 해석 (Analysis of a Cylindrical Pin Fin with Variable Diameter)

  • 강형석;김종욱
    • 산업기술연구
    • /
    • 제27권B호
    • /
    • pp.71-75
    • /
    • 2007
  • A cylindrical pin fin with variable diameter is analyzed by using the one dimensional analytical method. Heat loss and fin efficiency are presented as a function of the fin diameter, length and convection characteristic numbers ratio. The relationship between the fin diameter and convection characteristic number over the fin for the same amount of heat loss is shown. One of the results indicates the fin efficiency increases as the fin diameter increases while that decreases as the fin length increases.

  • PDF