• Title/Summary/Keyword: Heat-generating

Search Result 291, Processing Time 0.028 seconds

An Experimental Study on Understanding of Production Mechanism of a Mist from Fin Adhesion heat Exchanger (핀 부착 열교환기에서 습증기(mist)발생 메커니즘의 파악을 위한 실험적 고찰)

  • 최권삼
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.146-152
    • /
    • 2000
  • As an improvement in the standard of living and economic growth the demand for air conditioning equipment is increasing rapidly. Nowadays air conditioning equipments are being used for industry large building house and car. Thess equipments was concentrated on improving heat efficiency of economic aspects while they design heat exchanger for cooling and heating,. These air conditioning equipments using heat exchanger cause a discomfort to user due to generating mist at the beginning of operating. Therefore the user demand air of high class and quality. In this experimental study to acquire elementary data for development of heat exchanger which be able to supply air of high quality that is to say possess a restraint effect of mist generation. We estimate an effect on cooling plate kind supply air velocity supply air temperature cooled plate temperature and supply air relative humidity which have an influence on outlet air condition of heat exchanger.

  • PDF

The Improvement of Junction Box Within Photovoltaic Power System

  • Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.359-362
    • /
    • 2016
  • In the PV (Photovoltaic) power system, a junction box collects the DC voltage generated from the PV module and transfers it to the PCS (power conditioning system). The junction box prevents damage caused by the voltage difference between the serially connected PV modules and provides convenience while repairing or inspecting the PV array. In addition, the junction box uses the diode to protect modules from the inverse current when the PV power system and electric power system are connected for use. However, by using the reverse blocking diode, heat is generated within the junction box while generating electric power, which decreases the generating efficiency, and causes short circuit and electric leakage. In this research, based on the purpose of improving the performance of the PV module by decreasing the heat generation within the junction box, a junction box with a built-in bypass circuit was designed/manufactured so that a certain capacity of current generated from the PV module does not run through the reverse blocking diode. The manufactured junction box was used to compare the electric power and heating power generated when the circuit was in the bypass/non-bypass modes. It was confirmed that the electric power loss and heat generation indicated a decrease when the circuit was in the bypass mode.

The optimal array of various heat-generating heaters located on one wall of a vertical open top cavity (상부가 개방된 수직 캐비티내의 한쪽면에 배열된 다양한 발열조건을 갖는 발열체의 최적배열)

  • Riu, Kap-Jong;Choo, Hong-Lock;Choi, Byung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.15-23
    • /
    • 1997
  • An experimental investigation of two-dimensional steady natural convection cooling in a vertical open top cavity with conducting side walls of finite thickness is presented. The various heat-generating discrete heaters are located on one vertical wall of the cavity. When each heater dissipates different amount of power, the purpose of the work is to obtain the optimal array condition of the heaters. The four cases of non-uniform heating conditions are considered. The temperature fields in the cavity were visualized by the interferometer and local temperatures of the vertical wall were measured by thermocouples. The heaters were arranged in two configurations: flush-mounted on a vertical wall or protruding from the wall about 4.5 mm. The vertical wall was constructed out of copper or epoxy-resin sheet. Experiments have been conducted for air with constant Prandtl number(Pr=0.7), the aspect ratio of 4.6, 7.5, 9.5, power input in the range of 0.9 W ~ 4.2 W. For the enhancement of the cooling effectiveness, the upper and lower of vertical wall would give the better position for the heaters of higher heat flux.

Combustion Characteristics in a Heat-recirculating Microemitter for a Micro Thermophotovoltaic System (초소형 열광전변환 장치용 열재순환 초소형 이미터 내 연소특성에 관한 연구)

  • Lee, Kyoung-Ho;Kwon, Oh-Chae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2360-2365
    • /
    • 2007
  • A new microemitter (microcombustor) configuration for a micro thermophotovoltaic system in which thermal energy is directly converted into electrical energy through thermal radiation was investigated experimentally and computationally. The microemitter as a thermal heat source was designed for a few watt power-generating micro thermophotovoltaic system. In order to satisfy the primary requirements for designing the microemitter, i.e., stable burning in the small confinement and maximum heat transfer through the emitting walls but uniform distribution of temperature along the walls, the present microemitter is cylindrical with an annular-type shield for heat recirculation to apply for the excessive enthalpy concept. Results show that the heat recirculation substantially improves the performance of the microemitter: the observed and predicted thermal radiation from the microemitter walls indicated that heat generated in the microemitter is uniformly emitted.

  • PDF

Transition mechanism during the critical heat flux condition in flow and pool boiling (유동 및 풀비등에 있어서 한계열플럭스 상태하의 천이기구)

  • 김경근;김명환;권형정;김종헌;최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.40-53
    • /
    • 1989
  • Boiling heat transfer phenomena is widely applied to BWR and electrical heating system because of its high heat transfer coefficient. In these systems, steady state heat transfer is dependent on nucleate boiling. When the heat generating rate is sharply increased or the cooling capacity of coolant is sharply decreased, sharp wall temperature rise is occurred under the critical heat flux(CHF) condition. This paper presents the simple wall temperature fluctuation model of transition mechanism in the repeating process of overheating and quenching, when coalescent bubble passes relatively slowly on the wall and simultaneously the transition from nucleate boiling to film boiling is carried at especially onset of the CHF state. The values calculated by the present model are resulted comparatively good with the measured.

  • PDF

Experimental measurements on Single-Phase Local heat transfer coefficients in $6{\times}6$ rod bundles with LSVF mixing vanes (LSVF 혼합날개를 이용한 $6{\times}6$ 연료봉 다발에서의 단상 국부적 열전달계수의 실험적 측정)

  • Bae, Kyenug-Keun;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.300-305
    • /
    • 2005
  • The present experimental study investigates single-phase heat transfer coefficients downstream of support grid in $6{\times}6$ rod bundles. Support grid with split mixing vanes enhance heat transfer in rod bundles by generating it make turbulence. But this turbulence is confined to short distance. Support grid with LSVF mixing vanes enhanced heat transfer to longer distance. The corresponding Reynolds number investigated in the present study is Re=30,000. The heat transfer coefficients are measured using heated and unheated copper sensor.

  • PDF

Analysis of Performance Enhancement of a Microturbine by Water Injection (수분사를 통한 마이크로터빈 성능향상 해석)

  • Jeon, Mu-Sung;Lee, Jong-Jun;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.46-51
    • /
    • 2009
  • Recently, microturbines have received attention as a small-scale distributed power generator. Since the exhaust gas carries all of the heat release, generating hot water is usual method of heat recovery from microturbine CHP (combined heat and power) systems. The power of microturbines decreases as ambient temperature increases. This study predicted micoturbine power boost by injecting hot water generated by heat recovery. Influence of injecting water at two different locations was examined. Water injection improves power, but efficiency depends much on the injection location. Injecting water at the compressor discharge shows a much higher efficiency than the combustor injection. However, the combustor injection may have as much available cogeneration heat as the dry operation, while the available heat in the compressor discharge injection is much smaller than the dry operation.

An Experimental Study on the Heat Transfer Characteristics of Two-phase closed Thermosyphon (밀폐형 2상 열사이폰의 열전달 특성에 관한 실험적 연구)

  • Cho, Ki-Hyun;Paek, Yee;Chung, Hyung-Kil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • The thermosyphon has been used as a heat transmission device in the heat recovery of low level energy and cooling for heat generating equipments. Many studies on the working fluids and wicks have been reported to improve the heat transfer efficiency of the thermosyphon. A low temperature heat pipe with acetone is chosen in the present study to compare the heat transfer characteristics due to pouring amount of working fluid, magnitude of power supplied and tilt angles. The thermosyphon made ⵁ$15.88{\times}0.8t{\times}600mm$ of copper, evaporation section 200mm, insulation section 25mm, condensation 375mm. Heat transfer rate of the thermosyphon increase as magnitude of power supplied increase and observe dry out phenomenon at 5~10% of pouring amount of working fluid. So thermosyphon at the 150kJ/s judged to need 12% or more. Heat transfer rate of the thermosyphon have nothing to do with tilt angles. Dry out phenomenon of the thermo syphon makes it possible that a low temperature thermosyphon may be used to control temperature and heat transfer of a system when the critical quantity of a working fluid is supplied in the thermosyphon.

  • PDF

Effective Heat Transfer Using Large Scale Vortices (대와류를 이용한 채널 내 열전달 증진)

  • Yoon, Dong-Hyeog;Choi, Choon-Bum;Lee, Kyong-Jun;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.198-206
    • /
    • 2008
  • A numerical study has been carried out to investigate heat transfer enhancement in channel flow using large-scale vortices. A square cylinder, inclined with respect to the main flow direction, is located at the center of the channel flow, generating a separation region and Karman vortices. Two cases are considered; one with a fixed blockage ratio and the other one with a fixed cylinder size. In both cases, the flow characteristics downstream of the cylinder significantly change depending on the inclination angle. As a result, heat transfer from channel wall is significantly enhanced due to increased vertical-velocity fluctuations induced by the large-scale vortices shed from the cylinder. Quantitative results as well as qualitative physical explanation are presented to justify the effectiveness of the inclined square cylinder as a vortex generator to enhance heat transfer from channel wall.

Natural Convection Heat Transfer and Flow Characteristics in a Square Enclosure with an Isolated Heat-Generating Innerboby (고립된 발열물체를 가지는 정사각형 밀폐공간 내에서의 자연대류 열전달 및 유동 특성에 관한 연구)

  • 이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.4
    • /
    • pp.360-367
    • /
    • 1984
  • 본 연구에서는 F=1/4때 및 F=4일때 각각 Fx 및 Fy가 변하는 율을 동일하게 선택하였다. 따라서 F=1/4때의 Fx값은 중력의 방향을 90˚회전 시킬때의 경우인 F=4 일 때의 Fy값과 동일하여진다.