• Title/Summary/Keyword: Heat-exchanger

Search Result 2,459, Processing Time 0.023 seconds

Numerical analysis of the vertical tube-in-tube ground coil heat exchanger (수직으로 매설된 이중관형 지중 열교환기에 대한 해석적인 연구)

  • 유지오;금성민;신현준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.339-348
    • /
    • 1999
  • A computer model was developed in order to predict the temperature distribution and the performance of the vertical tube-in-tube ground coil heat exchanger. This model has been validated by experimental results conducted by ORNL. The heat exchanger performance with the variation of the length is calculated and compared. As results, the heat exchanger performance is proportional to the length but the performance per unit length decreases. The minimum performance of 70m - PVC heat exchanger during cyclic operation for a week is obtained 20,054kJ/h for cooling operation and 13,915kJ/h for heating operation. And minimum temperature difference is $4.64^{\circ}C$ for cooling operation and $2.64^{\circ}C$ for heating operation. In each case, it is noted that the temperature difference between the pipe and the far-field occurs within 0.8m from the heat exchanger.

  • PDF

A Study on the Performance Prediction of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능예측에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Jin-Hyuck
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.294-299
    • /
    • 2005
  • In order to control indoor air quality and save energy. it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. Paper heat exchanger can recover $50{\sim}70$ of the enthalpy difference between supply and exhaust air. The purpose of this research is to obtain the experimental correlations for the friction factor, heat transfer coefficient, mass transfer coefficient and permeance of paper heat exchanger, which can be used for the performance prediction of the paper heat exchanger. Pressure drop at various velocities and heat transfer rate at various dry-bulb temperatures, relative humidities, and specific humidities are measured to make experimental correlations. The results of prediction using correlations show fairly good agreement with experimental data.

  • PDF

Development of a simplified model to maximize operating efficiency of heat exchanger (지중 열 교환기 운영 효율의 최적화를 위한 단순화 모델의 개발)

  • Kim, Kyung-Ho;Shin, Ji-Youn;Kim, Seong-Kyun;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.481-484
    • /
    • 2007
  • Efficiency of geothermal heat exchanger operation has close relation with temperature variation of the aquifer where the exchanger is installed. In the case of long-term operation, temperature distribution of the aquifer would be similar to that of water circulating in the exchanger, which causes the decrease of heat exchange rate. Therefore, the operation period of the heat exchanger should be controlled so that the temperature distribution of the aquifer is recovered. We developed a model to determine the operation period to acquire the optimal efficiency under the given aquifer condition. With this suggested method, when we use closed-loop heat exchanger, the operation efficiency of the geothermal heat exchanger is expected to be maximized by determining the optimal operation period.

  • PDF

Fouling Characteristics of Washable Shell and Coil Heat Exchanger (세척이 가능한 원통 코일형 열교환기의 파울링 특성에 관한 연구)

  • Hwang, Jun Hyeon;Na, Byung Chul;Oh, Sai Kee;Koo, Kyoung Min;Lee, Jae Keun;Ahn, Young Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • In this work, we studied the shell and helically coiled tube heat exchangers. Shell and coil heat exchangers with different rate of water flow and plate heat exchanger with same capacity were tested for condensing conditions. We proposed design guide using modified Wilson plot method. We compared fouling characteristics between shell and coil heat exchanger and plate heat exchanger, when they were washed and were not washed. The shell and coil heat exchanger showed 120% of higher saturated fouling resistance value and 4% of better heat transfer ratio than the plate heat exchanger.

An Experimental Study on the Possibility of Biogas Reforming using the Waste Heat of a Small-Sized Gas Engine Generator (소형 가스엔진 발전기의 배기가스 폐열을 이용한 바이오가스 개질 가능성에 관한 실험적 연구)

  • Cha, Hyo-Seok;Kim, Tae-Soo;Eom, Tae-Jun;Jung, Choong-Soo;Chun, Kwang-Min;Song, Soon-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.3
    • /
    • pp.236-242
    • /
    • 2012
  • This study has been carried out the experiment for the possibility of biogas reforming using waste heat. The source of this waste heat is the exhaust gas from a small-sized gas engine generator. For recovering the waste heat, Two-stage heat exchanger is manufactured. The two-stage heat exchanger is composed of a heat exchanger for the exhaust gas and a heat exchanger for the water. This two-stage heat exchanger is used for reforming the biogas by means of on-site hydrogen production at the small-sized gas engine generator. The two-stage heat exchanger is coupled with the biogas reformer which is a kind of catalytic reformer. To confirm a heat recovery efficiency of the two-stage heat exchanger, temperature differences of inlet and outlet locations are measured. Also, the variations of syngas concentrations with various biogas flow rates are investigated. As a result using manufactured two-stage heat exchanger, the biogas can be reformed from waste heat recovery. This experiment suggests that the exhaust gas heat exchanger is available for reforming the biogas.

An Experimental Study for Performance Evaluation of a Ceramic Heat Exchanger (세라믹 열교환기의 성능평가를 위한 실험적 연구)

  • Choi, Hyun-Soo;Shin, Dong-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • Exhaust gas of an industrial furnace used at such as metallurgy or ceramic manufacturing usually contains thermal energy with high temperature which can be recycled by heat exchanger. However, when the temperature of the exhaust gas is high such as more than $1,000^{\circ}C$, ordinary metallic heat exchanger cannot fully recover the heat due to the limitation of operating temperature depending on the material property. In the present study, a compact ceramic heat exchanger of cross flow type is introduced and evaluated by heat exchange rate and operating temperature. The ceramic heat exchanger can endure the gas temperature more than $1,300^{\circ}C$, and its volumetric heat exchanging rate exceeds 1 MW/$m^3$. The experimental data is also compared with the previous numerical result which shows reasonable agreement. Meanwhile, the gas leakage rate is measured to be about 3~4%, and heat loss to environmental air is about 23~26% of the fuel energy.

The Heat Transfer Performance with Pumping Power for a Particle Bed Heat Exchanger (입자층(粒子層)을 이용한 열교환기(熱交換器)에서 소요동력(所要動力)에 따른 전열특성(傳熱特性)에 관(關)한 연구(硏究))

  • Yoo, J.O.;Yang, H.J.;Cho, Y.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.351-359
    • /
    • 1992
  • In order to improve the performance of heat exchanger, fluidized bed is often employed. The experiments are carried out in fluidized double pipe parallel flow heat exchanger in which finned tube is vertically immersed. And the heat transfer coefficients between the heated tube and fluidized bed of alumina beads(dp=0.41, 0.54, 0.65, 0.77mm) are calculated as a function of air fluidized velocity and pumping power. The effects of particle size, static bed height and pumping power on the heat transfer coefficients are investigated. And the heat transfer coefficients are compared with that of single phase forced convection heat exchanger. In particular, the heat transfer performance of each type heat exchanger is evaluated in relation to the pumping power.

  • PDF

Performance analysis of a R744 and R404A cascade refrigeration system with internal heat exchanger (내부 열교환기 부착 R744-R404A용 캐스케이드 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • This paper describes an analysis on performance of R744-R404A cascade refrigeration system with internal heat exchanger to optimize the design for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporating and condensing temperature in the R744 low- and R404A high-temperature cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : COP of cascade refrigeration system increases with the increasing of compression efficiency, but decreases with the increasing temperature difference of cascade heat exchanger. Also, the COP increases with the increasing of internal heat exchanger efficiency in high-temperature cycle, but decreases with that in low-temperature cycle. Therefore, internal heat exchanger efficiency, compressor efficiency and temperature difference of cascade heat exchanger on R744-R404A cascade refrigeration system have an effect on the COP of this system.

Performance of a Direct Contact Heat Exchanger with Meshes for a Solar Thermal Energy System

  • Kim, Chong-Bo;Kim, Nam-Jin;Seo, Tae-Beom;Hur, Byung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.268-276
    • /
    • 2001
  • In order to improve the efficiency of a direct contact heat exchanger for a solar thermal energy system, the working fluid should be dispersed into small and uniform droplets, and stay within a heat exchanger for a long time. Therefore, installation of meshes in a direct contact heat exchanger is suggested in the present study, and the performance of the direct contact heat exchanger with several layers of meshes is experimentally investigated. Diethyl phthalate is used as the working fluid, and the performance of the heat exchanger is tested for several different operating conditions and compared to that of the heat exchanger without meshes. The results of this investigation show that meshes make droplets uniform and small when the flow rate is low. The relationship between the Peclet number and the Nusselt number becomes linear if it is steady. And, the Nusselt number for the direct contact heat exchanger with meshes becomes greater than that without meshes as the Peclet number increases.

  • PDF

An Analytical Study on a Performance Estimation of an Evaporative Heat Exchanger having Mini Channel (미세채널형 증발열교환기의 성능에 관한 해석적 연구)

  • Yoo, Youngjoon;Min, Seongki;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.233-236
    • /
    • 2012
  • In order to estimate the efficiency of an evaporative heat exchanger having mini channel, the equations to calculate heat exchanger properties, those are air temperatures and water temperatures etc, are derived from the governing equations based on the Navier-Stokes equation, even though there are several assumptions to make problem simplify. There are three heat transfer zones at the mini channel heat exchanger depending on the water condition. So, there are three governing equations and solutions to calculate the properties. As a results of this study, the equations to calculate a saturation point and a dry point are derived to evaluate an evaporative heat exchanger having micro channel. It is supposed to predict the performance and evaluate a mini channel heat exchanger.

  • PDF