• 제목/요약/키워드: Heat-electricity conversion

검색결과 48건 처리시간 0.027초

태양열집열기를 이용한 발전장치 연구 (Study on Power Device Using Solar Collector)

  • 전태규;양영준
    • 신재생에너지
    • /
    • 제10권4호
    • /
    • pp.22-28
    • /
    • 2014
  • The thermoelectric generator using solar heat was applied to the device (heat-electricity conversion device) to produce small-scale electricity. The purpose of this study was to investigate the characteristics and performance of the device, which equipped with heat pipe as heat source. The experimental results showed that efficiency of circular single evacuated solar collector was higher 2.7 times than that of rectangular solar collector. Furthermore maximum power of 5 watt was obtained when 2 devices with series array were used and it could be more improved by increasing the number of device or measurement time.

열병합발전의 성능 모니터링을 위한 발전효율 모델 (Power Generation Efficiency Model for Performance Monitoring of Combined Heat and Power Plant)

  • 고성근;고홍철;이준석
    • 플랜트 저널
    • /
    • 제16권4호
    • /
    • pp.26-32
    • /
    • 2020
  • 화력발전소에서 장치 이상이나 열화로 인해 발전효율이 저하될 때 운전자가 이를 감지하고 적시에 조처를 취할 수 있도록 지원하는 성능관리시스템은 무엇보다도 발전효율을 정확하게 예측하는 것이 중요하다. 공정용 증기 또는 난방용열(이하 공정용 증기로 단일화 표기)과 전기를 동시에 생산하는 열병합발전에 대해 지금까지 다수의 발전효율 모델들이 제안되었는데, 대부분 공정용 증기의 가치를 제대로 평가하지 못해 발전효율을 정확하게 예측하지 못했다. 본 연구에서는 발전효율 예측 모델의 계수를 조업 데이터를 통해 결정하고, 공정용 증기의 전기 환산효율(ECE, Electricity Conversion Efficiency) 모델을 적용함으로써 공정용 증기의 가치를 정확하게 평가할 수 있도록 하였다. 본 방법을 열병합발전의 설계 데이터에 적용하여 발전부하에 대한 발전효율의 추세선을 구한 결과 R2가 99.91%로 회귀 수준이 매우 높았다. 본 결과로부터 조업 데이터를 이용한 ECE 모델 계수 결정 방법이 발전효율을 정확하게 예측하여 열병합발전에 대한 성능 모니터링에 적합함을 확인할 수 있었다.

진동형 히트파이프 흡열판이 결합된 하이브리드 태양광/열 시스템 (Hybrid Photovoltaic/Thermal Solar System with Pulsating Heat Pipe Type Absorber)

  • 김창희;전동환;공상운;김종수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2148-2153
    • /
    • 2007
  • The electricity conversion-efficiency of solar cell for commercial application is about 6-15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the photovoltaic cells increases considerably after prolonged operations and the cell's efficiency drops significantly. PV/T refers to the integration of a PV module and a solar thermal collector in a single piece of equipment. By cooling the PV module with a fluid steam like air or water, the electricity yield can be improved. At the same time, the heat pick-up by the fluid can be to support space heating or service hot-water systems. In this study, a pulsating heat pipe solar heat collector was combined with single-crystal silicon photovoltaic cell in hybrid energy-generating unit that simultaneously produced low temperature heat and heat and electricity. This experiment was investigating thermal and electrical efficiency for evaluation of a PV/T system.

  • PDF

자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구 (An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.

JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION : GTHTR300C

  • Kunitomi, Kazuhiko;Yan, Xing;Nishihara, Tetsuo;Sakaba, Nariaki;Mouri, Tomoaki
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.9-20
    • /
    • 2007
  • Design study on the Gas Turbine High Temperature Reactor 300-Cogeneration (GTHTR300C) aiming at producing both electricity by a gas turbine and hydrogen by a thermochemical water splitting method (IS process method) has been conducted. It is expected to be one of the most attractive systems to provide hydrogen for fuel cell vehicles after 2030. The GTHTR300C employs a block type Very High Temperature Reactor (VHTR) with thermal power of 600MW and outlet coolant temperature of $950^{\circ}C$. The intermediate heat exchanger (IHX) and the gas turbine are arranged in series in the primary circuit. The IHX transfers the heat of 170MW to the secondary system used for hydrogen production. The balance of the reactor thermal power is used for electricity generation. The GTHTR300C is designed based on the existing technologies of the High Temperature Engineering Test Reactor (HTTR) and helium turbine power conversion and on the technologies whose development have been well under way for IS hydrogen production process so as to minimize cost and risk of deployment. This paper describes the original design features focusing on the plant layout and plant cycle of the GTHTR300C together with present development status of the GTHTR300, IHX, etc. Also, the advantage of the GTHTR300C is presented.

열전변환 장치의 특성 분석에 대한 연구 (Performance Analysis of A Variable-Spacing Cesium Thermionic Energy Converter)

  • Lee, Deuk-Yong
    • 대한전기학회논문지
    • /
    • 제41권9호
    • /
    • pp.1085-1094
    • /
    • 1992
  • A variable-spacing cesium thermionic energy conversion test station is designed and fabricated for the study of power generation. The diode is in the form of a guard-ringed plane-parallel geometry in which a polycrystalline rhenium emitter of 2 cmS02T area faces a radiation-cooled polycrystalline rhenium collector of 1.9 cmS02T area. The emission of plasma from heated refractory electrode metal is the driving reaction in the direct conversion of heat to electricity by thermionic energy conversion. The plasma is produced from electrons and positive ions formed simultaneously by thermionic emission and surface ionization of cesium atoms incident on the hot emitter from the cesium vapor in the diode. And high plasma density causes plasma multiplication within the gap due to volume ionization that results in high power output. The variation of the saturation current of a Knudsen converter is investigated at an emitter-collector gap of 0.1 mm and an emitter temperatures. A maximum power output of 13.47 watta/cmS02T is observed at a collector temperature of 963 K and a cesium reservoir temperature of 603 K.

저온열원 활용을 위한 유기랭킨사이클의 열적 특성에 관한 연구 (Study on the Thermal Characteristics of Organic Rankine Cycles for Use of Low-Temperature Heat Source)

  • 진재영;김경훈
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.191-194
    • /
    • 2011
  • Low-grade waste heat has generally been discarded in industry due to lack of efficient recovery methods. In recent years, organic Rankine cycle(ORC) has become a field of intense research and appears as a promising technology for conversion of heat into useful work of electricity. In this work thermodynamic performance of ORC with superheating of vapor is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the evaporating temperature on the characteristics of the system such as maximum possible work extraction from the given source, volumetric flow rate per 1 kW of net work and quality of the working fluid at turbine exit as well as thermal efficiency.

  • PDF

열전발전용 Bi-Te module에서 미끄럼에 따른 열응력 완화 특성 (A Effect of Fluid-assisted Sliding on Stress Relaxation of Bi-Te Modules in Thermoelectric Generation System)

  • 서창민;우병철
    • 한국해양공학회지
    • /
    • 제14권4호
    • /
    • pp.62-97
    • /
    • 2000
  • Recently the research for utilization of waste heat produced from electric power plants, casting factories, heat treating factories or commercial are being afforded by the need for energy saving. The objective of this study is to develop a thermoelectric generation system which unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper a thermoelectric technology on a optimum system design method and efficiency and cost effective thermoelectric element on order to extract the maximum power output from energy conversion of waste energy. It is shown that the longitudinal stresses of module contacted with two point constrained Al tubes could be released more than those with a one-point constrained.

  • PDF

열전발전용 Bi-Te Module에서 미끄럼에 따른 열응력 완화 특성 (A Characteristic of Fluid-Assisted Sliding on Stress Relaxation of Bi-Te Modules in Thermoelectric Generation System)

  • 우병철;이희웅
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권1호
    • /
    • pp.12-18
    • /
    • 2003
  • Recently the research for utilization of waste heat produced from electric power plants, casting factories, heat treating factories or commercial building are being afforded by the need for energy saving. The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents a thermoelectric technology on a optimum system design method and efficiency and cost effective thermoelectric element on order to extract the maximum power output from energy conversion of waste energy. It is shown that the longitudinal stresses of module contacted with two point constrained AI tubes could be released more than those with a one-point constrained.

해수 온도차를 이용한 선박의 ORC 발전 시스템 최적화 (A Optimization of the ORC for Ship's Power Generation System)

  • 오철;송영욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.595-602
    • /
    • 2012
  • 본 논문에서는 선박에서 배출되는 $CO_2$ 배출을 최소화하기 위한 노력의 일환으로 선박으로부터 배출되는 열에너지를 회수하고 재활용하는 방안으로 유기랭킨사이클 발전장치를 구동함으로써 선박의 에너지 효율을 높이고 온실가스 배출을 최소화할 수 있는 방안을 연구하였다. 선박에서 배출되는 배기가스와 냉각 시스템에서 배출되는 열에너지를 회수하여 터빈 발전기를 구동하는 ORC 발전시스템을 설계하고 시뮬레이션 하였다. 다양한 친환경 유기냉매를 이용하여 냉매를 적용하여 온도와 유량변화에 따른 열 해석을 실시하였고 냉각수 열원 예열기, 배기가스 가열기로 시스템을 구성하여 2,400kW급의 발전 출력을 얻을 수 있었다.