• Title/Summary/Keyword: Heat-cured resin

Search Result 82, Processing Time 0.024 seconds

Strength Properties of Bisphenol A-Type Epoxy-Modified Mortars under Various Curing Conditions (각종 양생조건에 따른 비스페놀 A형 에폭시수지 혼입 모르타르의 강도성상)

  • Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.55-59
    • /
    • 2009
  • The epoxy resin without hardener can harden by a ring-opening reaction in the presence of the alkalies produced by the hydration of cement in epoxy-modified mortars and concretes. This paper investigates the effect of curing conditions on the strength improvement of polymer-modified mortars using bisphenol A-type epoxy resin without hardener. The polymer-modified mortars using epoxy resin are prepared with various polymer-cement ratios, and subjected to ideal, water, dry and heat cures. In the heat cure, the epoxy-modified mortars are sealed or unsealed with a PVDC (polyvinylidene chloride) film. The epoxy-modified mortars are tested for flexural and compressive strengths at desired curing methods. The microstructures of the epoxy-modified mortars are also observed by scanning electron microscope. The effects of curing conditions on the strength development of the epoxy-modified mortars are examined. From the test results, the marked effectiveness of the heat cure under the PVDC film sealing against the development of the strength of the epoxy-modified mortar without the hardener is recognized. The flexural and compressive strengths of 7-day-90℃ heat-cured, PVDC film-sealed epoxy-modified mortars without hardener reach 7 to 17MPa and 24 to 44MPa respectively, and are two to three times of Unmodified mortar. Such high strength development of the epoxy-modified mortars may be achieved by the dense microstructure formation by cement hydrates and the hardening of the epoxy resin in the mortars.

  • PDF

A STUDY ON THE PHYSICAL PROPERTIES OF A COMPOSITE RESIN INLAY BY CURING METHODS (중합방법에 따른 복합레진 인레이의 물리적 성질에 관한 연구)

  • Cho, Sung-A;Cho, Young-Gon;Moon, Joo-Hoon;Oh, Haeng-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.254-266
    • /
    • 1997
  • This study was to know the usefulness of argon laser for composite resin, to prove the polymerized effect of heat treatment of composite resin inlay and to get the curing method for optimal physical properties of composite resin inlay. In this study we used four light curing units and one heat curing unit: Visilux $II^{TM}$, a visible light gun: $SPECTRUM^{TM}$, an argon laser: Unilux AC$^{(R)}$ and Astorn XL$^{(R)}$, visible light curing unit: CRC-$100^{TM}$ for heat treatment. Compared to a control group, we divided the experemental groups into five as follows: Control group: Light curing(Visilux $II^{TM}$) Experimental group 1 : Light curing(Visilux $II^{TM}$) + Light curing(Unilux AC$^{(R)}$) Experimental group 2: Light curing(Visilux $II^{TM}$) + Light curing(Astron XL$^{(R)}$) + Heat treatment(CRC-$100^{TM}$) Experimental group 3 : Laser curing($SPECTRUM^{TM}$) Experimental group 4 : Laser curing($SPECTRUM^{TM}$) + Light curing(Unilux AC$^{(R)}$) Experimental group 5 : Laser curing($SPECTRUM^{TM}$) + Light curing(Astron XL$^{(R)}$) + Heat treatment (CRC-$100^{TM}$) According to the above classification, we made samples through the curing of Clearfil CR Inlay$^{(R)}$, which is a composite resin for inlay, in a separable cylindrical metal mold and polycarbonate plate. And then, we measured and compared the value of compressive strength, diametral tensile strength and the surface micro hardness of each sample. The results were as follows : 1. Among the experimental groups, group 5 showed the highest value of compressive strength, $157.50{\pm}10.24$ kgf and control group showed the lowest value of compressive strength, $103.93{\pm}21.93$ kgf. Control group showed significant difference with the experimental groups(p<0.001). Group 2 which was treated by the heat showed higher compressive strength than that of group 1 which was not, and there was significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was significant difference group 4 and group 5(p<0.001). 2. Among the experimental groups, group 5 showed the highest value of diametral tensile strength, $95.84{\pm}1.97$ kgf and control group showed the lowest value of diametral tensile strength, $81.80{\pm}2.17$ kgf. Control group which was cured by visible light showed higher diametral tensile strength than group 3 which was cured Argon Laser. Group 2 which was treated by heat showed higher compressive strength than that of group 1 which was not, and there was significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was a significant difference group 4 and group 5(p<0.001). 3. Among the experimental groups, group 5 showed the highest value of microhardness of top surface, $148.42{\pm}9.57$ kgf and control group showed the lowest value of microhardness, $111.43{\pm}7.63$ kgf. In the case of bottom surface, group 5 showed the highest value of $146.19{\pm}7.62$ kgf, and control group showed the lowest, $104.03{\pm}11.05$ kgf. Group 3 which was cured by Argon Laser showed higher diametral tensile strength than control group which was cured only with a visible light gun. Group 2 which was treated by heat showed higher compressive strength than that of group 1 which was not, and there was a significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was a significant difference group 4 and group 5(p<0.001). 4. According to the above results, we took a conclusion that argon laser can be used as a useful unit for curing the composite resin and heat treatment can improve the physical properties of the composite resin inlay.

  • PDF

Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins

  • Asar, Neset Volkan;Albayrak, Hamdi;Korkmaz, Turan;Turkyilmaz, Ilser
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.241-247
    • /
    • 2013
  • PURPOSE. To evaluate the effect of various metal oxides on impact strength (IS), fracture toughness (FT), water sorption (WSP) and solubility (WSL) of heat-cured acrylic resin. MATERIALS AND METHODS. Fifty acrylic resin specimens were fabricated for each test and divided into five groups. Group 1 was the control group and Group 2, 3, 4 and 5 (test groups) included a mixture of 1% $TiO_2$ and 1% $ZrO_2$, 2% $Al_2O_3$, 2% $TiO_2$, and 2% $ZrO_2$ by volume, respectively. Rectangular unnotched specimens ($50mm{\times}6.0mm{\times}4.0mm$) were fabricated and drop-tower impact testing machine was used to determine IS. For FT, compact test specimens were fabricated and tests were done with a universal testing machine with a cross-head speed of 5 mm/min. For WSP and WSL, disc-shaped specimens were fabricated and tests were performed in accordance to ISO 1567. ANOVA and Kruskal-Wallis tests were used for statistical analyses. RESULTS. IS and FT values were significantly higher and WSP and WSL values were significantly lower in test groups than in control group (P<.05). Group 5 had significantly higher IS and FT values and significantly lower WSP values than other groups (P<.05) and provided 40% and 30% increase in IS and FT, respectively, compared to control group. Significantly lower WSL values were detected for Group 2 and 5 (P<.05). CONCLUSION. Modification of heat-cured acrylic resin with metal oxides, especially with $ZrO_2$, may be useful in preventing denture fractures and undesirable physical changes resulting from oral fluids clinically.

Pattern Formation by the watersoluble PSR ink (수성 PSR 잉크를 이용한 패턴 형성)

  • Lee, Myung-Su;Kim, Young-Bea;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2004
  • PSR ink is used to insulation coating material that heat resistance is. The use purpose is used for bridge prevention, circuit protection, stabilization of insulation. Heat-cured resin was used mainly on the materials of PSR inks. But, UV-curing type resin in used. Also, because of recently environmental problem, ink is going to water type. Purpose of this study is to develop PSR ink that can develop in pure water. and experiment did that do from that find suitable oligomer and monomer and does brand ratio differ. Specially Knew that is extent water soluble UV resin develop possible is DPHA 10~50% that A/A1924 is 50~90wt %, monomer. As a result, when ratio of A/A1924 and DPHA low viscosity epoxy resin is 5:1.5:1.5, could get high sensibility pattern repeatability, tack and alkali-resistance.

  • PDF

Physical Properties Effect of Dry-Heat and Microwave-Cured Acrylic Resins depending on the Irradiation-Induced Changes (유도광선변화에 따른 건식중합과 마이크로파중합 아크릴레진의 물리적 성질영향)

  • Kim, Gyu-Ri
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4388-4397
    • /
    • 2015
  • The purpose of this study was to research the property change of acrylic resins depending on the induced-beam change and research the improved physical property of dry-heat and microwave-cured dental place acrylic resin in order to develop the acrylic resins with the optimum characteristic. As a result of observing flexural rigidity, hardness and color difference, the dry-heat-cured specimens of Vertex RS and Paladent 20 showed ideal property at 5, 15, and 25 kGy irradiation. The microwave-cured specimens of Vertex RS and Paladent 20 showed ideal property at 5 kGy irradiation. The correlation analysis showed a positive correlation among ARD, flexural rigidity (0 418), E coefficient (0.675) and Barcol hardness (0 588). The radiation cure technology is helpful for relieving the contamination caused by the manufacture of polymer composite. It can significantly contribute to the fusion of ultra violet cure technology and nano technology and the improvement of mechanical property without giving effect to the workability of polymer.

SHEAR BOND STRENGTH OF HEAT-CURED DENTURE BASE RESIN TO SURFACE TREATED CO-CR ALLOY WITH DIFFERENT METHODS (코발트-크롬 합금의 표면처리에 따른 열중합형 의치상용 레진과의 전단결합강도)

  • Lee, Sang-Hoon;Hwang, Sun-Hong;Moon, Hong-Seok;Lee, Keun-Woo;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.216-227
    • /
    • 2007
  • Statement of problem: For the long-term success of removable partial dentures, the bonding between metal framework and denture base resin is one of the important factors. To improve bonding between those, macro-mechanical retentive form that is included metal framework design has been generally used. However it has been known that sealing at the interface between metal framework and denture base resin is very weak, because this method uses mechanical bonding. Purpose: Many studies has been made to find a simple method which induces chemical bond, now various bonding system is applied to clinic. In this experiment, shear bond strengths of heat-cured denture base resin to the surface-treated Co-Cr alloy were measured before and after thermocycling. Chemically treated groups with Alloy $Primer^{TM}$, Super-Bond $C&B^{TM}$, and tribochemically treated group with $Rocatec^{TM}$ system were compared to the beadtreated control group. The data were analyzed with two-way ANOVA. Result: 1. Shear bond strength of bead-treated group is highest, and Alloy $Primer^{TM}$ treated group, Super-Bond $C&B^{TM}$ treated group, RocatecTM system treated group were followed. Statistically significant differences were found in each treated group(p<0.05). 2. Surface treatment and thermocycling affected shear bond strength(p<0.05), however there was no interaction between two factors(p>0.05). 3. Shear bond strengths of bead-treated group and Alloy $Primer^{TM}$ treated group showed no statistically significant difference before and after thermocycling(p>0.05), and those of Super-Bond $C&B^{TM}$ treated group and $Rocatec^{TM}$ system treated group showed statistically significant difference after thermocycling(p<0.05).

Strength Improvement of Polymer-Modified Mortars Using Epoxy Resin (에폭시수지 혼입 폴리머 시멘트 모르타르의 강도증진방안)

  • Kim, Wan-Ki;Jo, Young-Kug
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.465-468
    • /
    • 2006
  • This paper investigates the effect of curing conditions on the strength improvement of polymer-modified mortars using epoxy resin with various curing methods. The polymer-modified mortars using epoxy resin are prepared with various polymer-cement ratios, and subjected to standard, hot water, heat cure and autoclave cures. The epoxy-modified mortars are tested for flexural and compressive strengths at desired curing methods. From the test results, the flexural and compressive strengths of the epoxy-modified mortars are hardly improved by the autoclave and hot water cures compared to the ideal cure of $20^{\circ}C$. Among the four types of curing methods, the strengths of the heat cured epoxy-modified mortars is largely improved. Especially, it is obtained in the mortars sealed with PVDC film.

  • PDF

Effect of chemical surface treatment on the flexural bond strength of heat curing denture base resin and reliners (화학적 표면처리가 열중합형 의치상 레진과 이장재간의 굴곡결합강도에 미치는 영향)

  • Choi, Esther;Han, Min-Soo;Kwon, Eun-Ja
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.219-227
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the effect of the chemical surface treatment on the flexural bond strength of heat curing denture base resin and reliners. Methods: Denture base resin surface was treated with MMA 95% and TEGDMA 5%, MMA 95% and silane coupling agent 5%, heat curing resin monomer. After denture reliners were injected, flexural bond strength was measured. Results: The repair resin of Vertex SC was higher than Lang, hard reliner of Kooliner was higher than Rebase. Soft reliner of Dura base and Coe-soft showed differently according to the surface treatment. The all chemical treatment groups on Vertex SC were significantly higher than control(p<0.05). In Lang group, 5% MPS treated group showed significantly higher flexural bond strength than others(p<0.05). In Kooliner group, all chemical treatment groups showed significantly higher than control(p<0.05). In Rebase group, the 5% MPS and the monomer denture base resin treated groups showed significantly higher than others(p<0.05). In Dura base group, 5% MPS treated group showed significantly higher flexural bond strength than others(p<0.05). In Coe-soft group, all treated groups were significantly higher than control group(p<0.05). Conclusion: TEGDMA, MPS, and the monomer of heat-cured denture base resin were effective to improve the bond strengths between denture base and denture relining materials. Especially, 5% MPS expected to strengthen effectively the bonding property of denture base and denture reliners within the results of this study.

A Study on the Heat-Curing of Acrylic Resin using Ring Furnace (Ring Furnace를 이용한 Acrylic Resin의 온성에 관한 연구)

  • Choi, Seog-Soon
    • Journal of Technologic Dentistry
    • /
    • v.13 no.1
    • /
    • pp.27-31
    • /
    • 1991
  • The purpose of this study was to evaluate the effect of curing time and curing temperature on the hear - Curing of acrylic resin using ring furnace. Specimens were fabricated from 2 kinds(Laboron, Bertex) heat-cured resin. Total 200 samples were divided into 4 groups(70$^{\circ}C$, 100$^{\circ}C$, 13$^{\circ}C$, 150$^{\circ}C$) and each group was divided into 5 small groups(30 min., 45min., 60min., 75min., 90min.). A microscope(Olympus Coll Co. Japan) was used to examine a randomly selected central zone, midzone and surface for each complete specimen. The results of the experiment were as follows : 1. To obtain non-polymerzation, cure the resin for 30 minutes at 70$^{\circ}C$ and 100$^{\circ}C$ in a ring furnace. 2. To obtain with porosity, cure the resin for 45 minutes, 60 minutes and 75 mintes at 70$^{\circ}C$ and for 90 minutes at 150$^{\circ}C$ in ring furnace. Porosity appears in Laboron for 30 minutes, 45 minutes at 150$^{\circ}C$ in a ring furnace. 3. Every other specimens connot get a sight of special problem with makes eye in the made surface.

  • PDF

A multi Step Cure Process to Prevent Residual Bubbles in LED Encapsulation Silicone Resin (LED Encapsulation 실리콘의 기포잔류방지를 위한 Step 경화공정 연구)

  • Song, M.J.;Kim, H.K.;Yoon, G.S.;Kim, K.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.101-106
    • /
    • 2012
  • Generally, rapid cure reaction of LED encapsulation silicone resin causes serious defects in cured resin products such as warpage, residual bubbles, and reduced wettablility. In order to prevent residual bubbles in silicone resin, the step cure process was examined in the present paper. Three kinds of step cure processes were applied, and bubble-free phenomenon was observed. Most of the bubbles were removed under $70^{\circ}C$, the minimum temperature for activating cure reaction. In addition, degree of cure(DOC) and temperature distribution were predicted by using FEM analysis of heat transfer. It was concluded that maintaining cure temperature which provide a DOC under 0.5~0.6 effectively reduces residual bubbles.