• Title/Summary/Keyword: Heat-Resistant Steel

Search Result 91, Processing Time 0.029 seconds

Effect of Bacteria in Soil on Microbiologically Influenced Corrosion Behavior of Underground X65 Pipeline (토양 속 박테리아가 지하매설 X65 배관의 미생물 부식 거동에 미치는 영향)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Kim, Woosik;Kim, Cheolman;Choi, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.168-179
    • /
    • 2022
  • Microbiologically Influenced Corrosion (MIC) occurring in underground buried pipes of API 5L X65 steel was investigated. MIC is a corrosion phenomenon caused by microorganisms in soil; it affects steel materials in wet atmosphere. The microstructure and mechanical properties resulting from MIC were analyzed by OM, SEM/EDS, and mapping. Corrosion of pipe cross section was composed of ① surface film, ② iron oxide, and ③ surface/internal microbial corrosive by-product similar to surface corrosion pattern. The surface film is an area where concentrations of C/O components are on average 65 %/16 %; the main components of Fe Oxide were measured and found to be 48Fe-42O. The MIC area is divided into surface and inner areas, where high concentrations of N of 6 %/5 % are detected, respectively, in addition to the C/O component. The high concentration of C/O components observed on pipe surfaces and cross sections is considered to be MIC due to the various bacteria present. It is assumed that this is related to the heat-shrinkable sheet, which is a corrosion-resistant coating layer that becomes the MIC by-product component. The MIC generated on the pipe surface and cross section is inferred to have a high concentration of N components. High concentrations of N components occur frequently on surface and inner regions; these regions were investigated and Na/Mg/Ca basic substances were found to have accumulated as well. Therefore, it is presumed that the corrosion of buried pipes is due to the MIC of the NRB (nitrate reducing bacteria) reaction in the soil.

Tribological Properties of Ceramic Composite Friction Materials Reinforced by Carbon Fibers (탄소섬유가 혼합된 세라믹 복합재 제동마찰재의 마찰·마모 특성)

  • Goo, Byeong-Choon;Kim, Min-Soo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Because the running speed of vehicles is increasing and a shorter braking distance is required, high heat-resistant brake pads are needed to satisfy the requirements of customers and car makers. In the near future, hazardous materials such as Cu, Cr, Zn, and Sb will be restricted from use in friction materials. Ceramic composites reinforced by carbon fibers are good candidates for eco-friendly friction materials. In this study, we develop ceramic composite friction materials. The friction materials are composed of carbon fibers, Si, SiC, graphite, and phenol resin and are prepared by hot forming and heat treatment at high temperatures. The density, void ratio, and compressive strength are $1.59-1.66g/cm^3$, 16.6-20, and 70-90 MPa, respectively. Friction and wear tests are performed using a pin-on-plate-type reciprocating friction tester at 25, 100, and $200^{\circ}C$. The counterpart material is a CrMoV steel extracted from a KTX brake disc. Friction coefficient, wear amount, and wear mechanism are measured and examined. We determine that the friction coefficients depend on the temperature and the fluctuation of the friction coefficients is larger at higher temperatures. The amount of wear increases with the surface temperatures of the specimens. The tribological properties of the developed composites are similar to those of a Cu-based sintered friction material. Through this study, it is confirmed that ceramic composite materials can be used as friction materials.

The Classification of Manufacturing Work Processes to Develop Functional Work Clothes - With a Reference to the Automobile, Machine and Shipbuilding Industries -

  • Park, Ginah;Park, Hyewon;Bae, Hyunsook
    • Journal of Fashion Business
    • /
    • v.16 no.6
    • /
    • pp.21-35
    • /
    • 2012
  • In consideration of the injuries and deaths occurring at manufacturing sites due to the use of inappropriate work clothes or safety devices, this study aims to categorize manufacturing work processes to develop functional work clothes for heavy industries including the automobile, machine and shipbuilding industries in South Korea. Defining the features of the work environments and work postures of these industries provided for a categorization of the work processes which would enable the development of suitable work clothes for each work process' category. The results of the study based on a questionnaire survey are as follows: Work process category 1, including steel panel pressing and auto body assembly, final inspection (in automobile) and inspection (in machine), requires work clothes with upper body and arm mobility and performance to protect from the toxic fume factor. Work process category 2, consisting of welding (in automobile), cutting-and-forming (in machine) and attachment-and-construction (in shipbuilding), requires clothing elasticity, durability and heat and fire resistance. Work process category 3 comprising welding and grinding in the machine and shipbuilding industries, requires work clothes' tear resistance and elasticity, particularly for lateral bending mobility, and work clothes' sleeves' and pants' hemlines with sealed designs to defend against iron filing penetration, as well as incombustible and heat-resistant material performance. Finally, work process category 4, including painting in machine and shipbuilding, requires work clothes with waterproofing, air permeability, thermal performance, elasticity, durability and abrasion resistance.

Experimental Study on Corrosion Characteristics of 1.25Cr-0.5Mo in the 1st-mathanator reactor for Synthetic Natural Gas according to Gas Compositions (1.25Cr-0.5Mo강을 이용한 합성가스 조성 변화에 따른 SNG 1차반응기의 부식특성에 관한 실험적 연구)

  • Kim, Jin-Hyun;Cho, Honghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.709-716
    • /
    • 2016
  • Recently, the operating conditions of the various mechanical structures have become more severe and the running time has become longer as the development of plant equipment increases with the introduction of high technology. Thus, the reliability of the system and its accessories is becoming a problem. Normally, synthetic natural gas (SNG) plants use 1.25Cr-0.5Mo or 2.25Cr-1Mo heat resistant steel according to the operating conditions. In this study, a lab-scale reactor was set up using 1.25Cr-0.5Mo steel, in order to carry out corrosion tests for producing synthetic natural gas. The corrosive characteristics were investigated under 1st-methanator operating conditions and fundamental data about the durability and reliability were obtained by using the experimental test. The analysis of results obtained on the durability of the reactor under emission and injection compositions showed that the hydrogen embrittlement caused by hydrogen and the oxidation corrosion caused by H2O had the most effect on the durability of 1.25Cr-0.5Mo steel in the SNG reactor. However, the hydrogen embrittlement and oxidation corrosion occurred simultaneously under emission conditions, so that the corrosion of the material increased suddenly after a long operating time. Besides, the corrosion of the 1.25Cr-0.5Mo steel under the injection composition was faster than that under the emission composition.

A Study on Characteristic of Fracture in Lap Joint Welded STS429L (STS429L 겹침 용접부의 파단 특성에 관한 연구)

  • Choi, Dong-Soon;Kim, Jae-Seong;Kim, Hyun-Jae;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.49-54
    • /
    • 2009
  • Recently, a demand of ferritic STS is increasing rapidly in automobile exhaust system. Exhaust manifolds are the part nearest to the engine so that the material is exposed to high temperature exhaust gas. Excellent heat resistant properties, especially high temperature strength, thermal fatigue resistance and high corrosion resistance are necessary for these parts. STS429L contains 15 weight percent of Cr and low Mo, so has good price competitive. And it has excellent high temperature strength and corrosion resistance, so receives attentions as material that applying to exhaust manifold. In tensile test of lap joint welded STS 429L, most of specimens are failed in base metal, but occurs brittle fracture in weld metals at some specimens in the face of good welding conditions. In the process of tensile test, lap joint welded STS429L specimens are transformed locally. The brittle fracture occurs that local transforming area exists in weld metals. But, butt welding specimens made by same materials showed ductile fracture in tensile test and bending test. In this study, suppose the reason of brittle fracture is in the combined local transform and tensile stress, through analysis of bead geometry, evaluate geometrical factor of brittle fracture in lap joint welded STS429L.

Investigation Into the Drilling Characteristics of Carbon Fiber Reinforced Plastic (CFRP) with Variation of the Stacking Sequence Angle (탄소섬유강화플라스틱(CFRP)의 적층 배향각에 따른 드릴링 가공 특성 고찰)

  • Kim, Tae-Young;Kim, Ho-Seok;Shin, Hyung-Gon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.250-258
    • /
    • 2014
  • Due to recent industrial growth and development, there has been a high demand for light and highly durable materials. Therefore, a variety of new materials has been developed. These new materials include carbon fiber reinforced plastic (CFRP or CRP), which is a wear-, fatigue-, heat-, and corrosion-resistant material. Because of its advantageous properties, CFRP is widely used in diverse fields including sporting goods, electronic parts, and medical supplies, as well as aerospace, automobile, and ship materials. However, this new material has several problems, such as delamination around the inlet and outlet holes at drilling, fiber separation, and tearing on the drilled surface. Moreover, drill chips having a fine particulate shape are harmful to the work environment and engineers' health. In fact, they deeply penetrate into machine tools, causing the reduction of lifespan and performance degradation. In this study, CFRP woven and unidirectional prepregs were formed at $45^{\circ}$ and $90^{\circ}$, respectively, in terms of orientation angle. Using a high-speed steel drill and a TiAIN-coated drill, the two materials were tested in three categories: cutting force with respect to RPM and feed speed; shape changes around the input and outlet holes; and the shape of drill chips.

Effect of Mn Addition on Sintering Properties of Ti-10wt.%Al-xMn Powder Alloy (Ti-10wt.%Al-xMn 분말합금의 Mn첨가에 따른 소결특성 평가)

  • Shin, Gi-Seung;Hyun, Yong-Taek;Park, Nho-Kwang;Park, Yong-Ho;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.235-241
    • /
    • 2017
  • Titanium alloys have high specific strength, excellent corrosion and wear resistance, as well as high heat-resistant strength compared to conventional steel materials. As intermetallic compounds based on Ti, TiAl alloys are becoming increasingly popular in the aerospace field because these alloys have low density and high creep properties. In spite of those advantages, the low ductility at room temperature and difficult machining performance of TiAl and $Ti_3Al$ materials has limited their potential applications. Titanium powder can be used in such cases for weight and cost reduction. Herein, pre-forms of Ti-Al-xMn powder alloys are fabricated by compression forming. In this process, Ti powder is added to Al and Mn powders and compressed, and the resulting mixture is subjected to various sintering temperature and holding times. The density of the powder-sintered specimens is measured and evaluated by correlation with phase formation, Mn addition, Kirkendall void, etc. Strong Al-Mn reactions can restrain Kirkendall void formation in Ti-Al-xMn powder alloys and result in increased density of the powder alloys. The effect of Al-Mn reactions and microstructural changes as well as Mn addition on the high-temperature compression properties are also analyzed for the Ti-Al-xMn powder alloys.

The Effect of Heat Exposure on Fatigue Properties of INVAR Steel Core for STACIR/AW Conductor (증용량저이도송전선(STACIR/AW)용 인바강선의 피로특성에 미치는 경년열화의 효과)

  • Kim, Shang-Shu;Kim, Byung-Geol;Park, Su-Dong;Lee, Hee-Woong;Sin, Goo-Yong;Lee, Dong-Il;Min, Byung-Uk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1274-1277
    • /
    • 2004
  • 최근 에너지 소비구조의 선진화에 따라 전력수요는 매년 10%이상 증가하고 있지만 철탑부지확보 및 환경 문제 둥에 의해 신규 송전선의 건설은 점차 어려워지고 있다. 이에 대한 대책으로 철탑의 교체 없이 송전선의 전류용량간 증가시키는 방안이 우선적으로 고려되어 적용되고 있다. 이미 국내에서도 기존 송전선인 ACSR 전선을 중용량 저이도의 특성을 가진 STACIR/AW(Super Thermal-resistant Aluminum alloy Conductors, aluminum-clad Invar-Reinforced)송전선으로 교체하여 전력 수송량을 증가시키고 있다. STACIR/AW전선은 도체의 내열성을 향상시켜 연속허용온도$(210^{\circ}C)$를 높임으로 전류용량을 증가시키고, ACSR에 사용되는 강심재료인 고탄소강선을 선팽창계수가 낮은 인바강선(INVAR)으로 대체함으로 고온환경에 따른 이도증가를 방지하고 있다. 그러나 STACIR/AW 송전선은 ACSR 송전선에 비하여 연속허용온도가 높고 경간의 거리가 멀기 때문에 열화에 의한 피로특성의 변화 가능성이 높다. 따라서 본 연구에서는 증용량저이도전선의 강심소재인 INVAR/AW강선을 소정의 온도에서 경년 열화하고, 열화시간에 따른 강도와 피로특성의 변화를 조사하여, STACIR/AW전선의 안정적 운전을 위한 재료물성적 관리인자를 도출하고자 하였다.

  • PDF

A Numerical Technique for Predicting Deformation due to Neutron Irradiation for Integrity Assessment of Research Reactors (연구용 원자로의 건전성 평가를 위한 수치해석적 중성자 조사 재료변형 예측기법 개발)

  • Jun-Geun Park;Tae-Hyeon Seok;Nam-Su Huh
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • Research reactors are operated under ambient temperature and atmospheric pressure, which is much less severe conditions compared to those in typical nuclear power plants. Due to the high temperature, heat resistant materials such as austenite stainless steel should be used for the reactors in typical nuclear power plants. Whereas, as the effect of temperature is low for research reactors, materials with high resistance to neutron irradiation, such as zircaloy and beryllium, are used. Therefore, these conditions should be considered when performing integrity assessment for research reactors. In this study, a computational technique through finite element (FE) analysis was developed considering the operating conditions and materials of research reactor when conducting integrity assessment. Neutron irradiation analysis techniques using thermal expansion analysis were proposed to consider neutron irradiation growth and swelling in zirconium alloys and beryllium. A user subroutine program that can calculate the strain rate induced by neutron irradiation creep was developed for use in the commercial analysis program Abaqus. To validate the proposed technique and the user subroutine, FE analysis results were compared with hand-calculation results, and showed good agreement. Consequently, developed technique and user subroutine are suitable for evaluating structural integrity of research reactors.

Fire Resistance of Circular Internally Confined Hollow Reinforced Concrete Column (원형 내부 구속 중공 철근콘크리트 기둥의 내화 성능)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Gyu-Sei;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2010
  • Reinforced-concrete (RC) columns are frequently designed and constructed. other types of columns includes composite types such as concrete-filled tube columns (CFT). Hollow RC columns may be effective in reducing both the self weight of columns and total amount of materials used. This is due to the fact that a hollow RC column possesses larger moment of inertia than that of solid RC columns of same cross sectional area. Despite the effectiveness the hollow RC column has not been popular because of its poor ductility performance. While the transverse reinforcements are effective in controlling the brittle failure of the outside concrete, they are not capable of resisting the failure of concrete of inner face which is in unconfined state of stress. To overcome these drawbacks, the internally confined hollow reinforced concrete (ICH RC), a new column type, was proposed in the previous researches. In this study, the fire resistance performance of the ICH RC columns was analyzed through a series of extensive heat transfer analyses using the nonlinear-material model program. Also, effect of factors such as the hollowness ratio, thickness of the concrete, and thickness of the internal tube on the fire resistance performance were extensively studied. Then the factors that enhance the fire-resistant performance of ICH RC were presented and analyzed.