• 제목/요약/키워드: Heat treatment simulation

검색결과 138건 처리시간 0.026초

정수장 내 축열조 설치 원수열원 히트펌프의 성능분석 (Studies on Raw-Water Source Heat Pump Equipped with Thermal Storage Tank in Water Treatment Facility)

  • 오선희;윤린;조용
    • 대한기계학회논문집B
    • /
    • 제37권5호
    • /
    • pp.467-472
    • /
    • 2013
  • 정수장 내 축열조 설치 원수열원 히트펌프시스템의 동적 특성을 TRNSYS 프로그램을 이용하여 모델링 하였다. 원수열원 히트펌프의 실증평가를 위해 성남정수장 내 축열조가 설치된 히트펌프 실험결과를 이용하여 검증하였고, 본 설비는 2010년 11월부터 운전되고 있다. 모델링 결과 원수열원 히트펌프의 평균 COP는 냉 난방 시 각각 4.97과 3.17을 나타냈다. 축열조 용량은 $5m^3$에서 $20m^3$로 변화시킬 때, 축열조 용량 $10m^3$ 에서 가장 높은 COP와 소비전력이 나타났다. 설치지역으로 서울, 인천, 강릉, 그리고 광주를 고려하였고, 지역에 따른 COP와 소비전력은 큰 변화가 없었으나 소비전력량에 있어서 난방 시에 위도가 높은 서울의 소비전력량이 가장 높으며, 냉방 시에 가장 낮게 나타났다. 본 시스템을 동일한 용량의 물-공기방식의 히트펌프와 비교할 때 평균 25%정도 낮은 소비전력량을 나타냈다.

용접부의 영향을 고려한 하이드로포밍된 자동차용 DP강관의 충돌 특성 평가 (Crash Performance Evaluation of Hydro-formed Automotive DP-Steel Tube Considering Welding Heat Effects)

  • 정경환;권혁선;박성호;노동성;정관수
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.568-573
    • /
    • 2006
  • In order to numerically evaluate automotive hydro-formed DP-steel tubes on crash performance considering welding heat effects, the finite element simulations of crash behavior were performed for hydro-formed tubes with and without heat treatment effects. This work involves the mechanical characterization of the base material and the HAG-welded zone as well as finite element simulations of the crash test of hydro-formed tubes with welded brackets and hydro-forming of tubes. The welding heat effects on the crash performance are evaluated in efforts to improve the process optimization procedure of the engine cradle in the design stage. In particular, FEM simulations on indentations have been performed and experimentally verified for material properties of weld zone and heat affected zone.

Chevron 유로 내의 미시적 해석 결과를 통한 대형 판형열교환기 특성에 대한 준미시적 해석 (A Semimicroscopic Analysis for the Characteristics of a Large Plate Heat Exchanger through a Microscopic Flow and Heat Transfer Analyses inside a Chevron Passages)

  • 이나리;이명성;이상혁;허남건
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1159-1165
    • /
    • 2009
  • In the present study, the flow and heat transfer characteristics of a large plate heat exchanger are investigated numerically. The flow passages are very complicated due to the grooved corrugation patterns of the plate surface so that the detailed mesh and the large amount of the computation time have to be required in the numerical simulation for the conjugate heat transfer analysis. In order to accomplish the efficient and fast analysis of the heat transfer characteristics in the plate heat exchanger, a semimicroscopic method using the porous media model has been investigated numerically. The results showed that the characteristics of the heat transfer and pressure drop, which are respectively presented with Colburn j-factor and Fanning f-factor, are in a good agreement between the detailed mesh and the porous media model. The results of the present study could be applicable to the numerical analysis of entire flow passages in the large plate heat exchanger using porous media treatment.

  • PDF

소형화된 다이폴 안테나 배열 구조를 이용한 고온 온열 치료 전자기파 방사체 (Applicator of Hyperthermia with Compact Dipole Antenna Array)

  • 김기준;최우철;최재훈;윤영중
    • 한국전자파학회논문지
    • /
    • 제23권2호
    • /
    • pp.244-250
    • /
    • 2012
  • 본 논문에서는 소형화된 대칭형 다이폴 안테나와 이를 이용한 배열 구조를 제안하였다. 제안된 안테나 배열 구조는 표재성 암 치료를 위한 고온 온열 치료의 전자기파 방사체에 사용된다. 소형화된 다이폴 안테나는 가온 균일성 향상을 위하여 양 갈래 다이폴과 정합 구조가 대칭형으로 설계되었고 이를 이용하여 $2{\times}2$ 배열 구조가 제작 및 측정되었다. 제작된 배열 구조는 전자파 흡수율과 생체열 방정식에 의하여 모의 실험되고, 다중 채널 온도계를 사용하여 30분 및 60분 간의 온도 분포가 측정되었다. 그 결과, 다이폴 안테나에 각각 2 W의 전력을 공급하였을 때 2.7도와 3.3도의 온도가 상승하였다. 측정 환경에서의 모의 실험 결과와 측정 결과가 일관성을 보였으며, 실제 치료 환경을 가정한 모의 실험을 통하여 실제 의료 기기 활용에 많은 도움이 될 것으로 기대된다.

관형 요도 조직 대상 내시경적 레이저 조사 조건 연구 (Endoscopic Laser Irradiation Condition of Urethra in Tubular Structure)

  • 신화랑;임성희;이예찬;강현욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권1호
    • /
    • pp.85-91
    • /
    • 2023
  • Stress urinary incontinence (SUI) occurs when abdominal pressure increases, such as sneezing, exercising, and laughing. Surgical and non-surgical treatments are the common methods of SUI treatment; however, the conventional treatments still require continuous and invasive treatment. Laser have been used to treat SUI, but excessive temperature increase often causes thermal burn on urethra tissue. Therefore, the optimal conditions must be considered to minimize the thermal damage for the laser treatment. The current study investigated the feasibility of the laser irradiation condition for SUI treatment using non-ablative 980 nm laser from a safety perspective through numerical simulations. COMSOL Multiphysics was used to analyze the numerical simulation model. The Pennes bioheat equation with the Beer's law was used to confirm spatio-temporal temperature distributions, and Arrhenius equation defined the thermal damage caused by the laser-induced heat. Ex vivo porcine urethral tissue was tested to validate the extent of both temperature distribution and thermal damage. The temperature distribution was symmetrical and uniformly observed in the urethra tissue. A muscle layer had a higher temperature (28.3 ℃) than mucosal (23.4 ℃) and submucosal layers (25.5 ℃). MT staining revealed no heat-induced collagen and muscle damage. Both control and treated groups showed the equivalent thickness and area of the urethral mucosal layer. Therefore, the proposed numerical simulation can predict the appropriate irradiation condition (20 W for 15 s) for the SUI treatment with minimal temperature-induced tissue.

알루미늄 합금 볼트의 제조 공정 설계 (Manufacturing Process Design of Aluminum Alloy Bolt)

  • 김지환;채수원;한승상;손요헌
    • 한국정밀공학회지
    • /
    • 제27권5호
    • /
    • pp.63-68
    • /
    • 2010
  • The use of aluminum alloy parts in the automotive industry has been increasing recently due to its low weight compared with steel to improve fuel efficiency. Companies in the auto parts' manufacturing sector are expected to meet the government's strict environmental regulations. In this study, manufacturing process of aluminum alloy bolt has been designed from forming to heat treatment. Bolt forming process is composed of cold forging for body and rolling for thread. In this study only cold forging process is considered by employing the finite element method. In the cold forging process, preform shape was designed and damage value was considered for die design. Two steps of forging process has been developed by the simulation and a prototype was manugactured accordingly. As a final process, solution heat treatment and aging process was employed. A final prototype was found to meet the required specifications of tensile strength and dimension.

Balancing 모듈 설계를 위한 Differential Gear System의 구조해석에 관한 연구 (Structural Analysis of Differential Gear System for Balancing Module Design)

  • 장태환;김동준;문창호;이성재;김태규
    • 열처리공학회지
    • /
    • 제32권6호
    • /
    • pp.270-274
    • /
    • 2019
  • In this study, simulation structure analysis was performed for the differential gear system for passenger cars as a prerequisite for the design of the balancing module. The differential gear system was modeled by using CATIA and simulation structure analysis was performed using ANSYS software. The material of the modeled differential gear system uses the mechanical properties of S45C (Q&T). In the structural analysis of the differential gear, the areas where the maximum stress and the maximum strain occurred can be identified. The maximum stress and maximum strain occurred in the pitch circle of the bevel gear. In evaluating the safety factor, it was found that sufficient safety factor was secured. Based on the analysis results for the differential gear, it is expected that it will be a good reference if we design the balancing module device.

선회유동을 이용한 마이크로버블 발생기의 다상유동 전산유체역학 해석 (Multiphase CFD Analysis of Microbubble Generator using Swirl Flow)

  • 윤신일;김현수;김진광
    • 열처리공학회지
    • /
    • 제35권1호
    • /
    • pp.27-32
    • /
    • 2022
  • Microbubble technology has been widely applied in various industrial fields. Recently, research on many types of microbubble application technology has been conducted experimentally, but there is a limit in deriving the optimal design and operating conditions. Therefore, if the computational fluid dynamics (CFD) analysis of multiphase flow is used to supplement these experimental studies, it is expected that the time and cost required for prototype production and evaluation tests will be minimized and optimal results will be derived. However, few studies have been conducted on multiphase flow CFD analysis to interpret fluid flow in microbubble generators using swirl flow. In this study, CFD simulation of multiphase flow was performed to analyze the air-water mixing process and fluid flow characteristics in a microbubble generator with a dual-chamber structure. Based on the simulation results, it was confirmed that a negative pressure was formed on the central axis of rotation due to the strong swirling flow. And it could be seen that the air inside the suction tube was introduced into the inner chamber of the microbubble generator. In addition, as the high-speed mixed fluid collided with external water sucked by the negative pressure near the outlet, a large amount of microbubbles was ejected due to the shear force between the two flows flowing in opposite directions.

용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 -제2보: 부식특성 (Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 2nd Report: Corrosion Characteristics)

  • 안석환;최문오;김성광;손창석;남기우
    • 한국해양공학회지
    • /
    • 제21권5호
    • /
    • pp.33-38
    • /
    • 2007
  • The welding methods have been applied in the most structural products from multi-field of automobile, ship construction and construction, and so on. The structure steel must have enough strength of structure. In this study, SS400 steel and STS304 steel were used to estimate the corrosion characteristics of the weld thermal cycle simulated HAZ. To evaluate the corrosion characteristics, also, the materials with two conditions were used in 3.5% NaCl. The one is to the drawing with diameter of ${\Phi}10$ and the other is to the residual stress removal treatment. The electrochemical polarization test and immersion test were carried out. From test results, corrosion potential, corrosion current density, weight loss ratio and corrosion rate were measured. In the kinds of SS400 steels, corrosion potential of weld thermal cycle simulated specimens after the heat treatment showed somewhat the direction of noble potential. And in the base metal to be drawing weight loss ratio and corrosion rate occurred higher than the other kinds. In the kinds of STS304 steels, the result of base metal to be drawing was similar to results of SS400 steels, too. Two kinds of $750^{\circ}C$ and $1300^{\circ}C$ of weld thermal cycle simulation after the heat treatment were rather higher than the other kinds in weight loss ratio and corrosion rate.

유한요소해석을 이용한 탄소강의 담금질 공정에 대한 상변태 및 기계적 성질 예측 (Prediction of Phase Transformation and Mechanical Property of Carbon Steel in Quenching based on Finite Element Analysis)

  • 김동규;정경환;강성훈;임용택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2009
  • A great emphasis has been placed on the design of heat treatment process to achieve desired microstructure and mechanical property of final product. In this study, finite element analysis was carried out to predict temperature, microstructure and hardness of eutectoid steel after water quenching. Convective heat transfer coefficients were determined by inverse analysis using surface temperatures measured with three different installation methods of thermocouples. Finally, the effect of convective heat transfer coefficients on the prediction of temperature history and hardness was analyzed by comparing experimental and simulation results.

  • PDF