• Title/Summary/Keyword: Heat treatment condition

Search Result 968, Processing Time 0.027 seconds

Fatigue Characteristics and FEM Analysis of $18\%$Ni(200) Maraging Steel (18Ni 마르에이징강의 피로특성 및 유한요소해석)

  • Choi Byung Ki;Jang Kyeung Cheun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2005
  • Recently the needs of high reliable substances of high strength and high ductility are gradually increased with the development of aerospace industry. The characteristics of maraging steel has high ductililty, formability, corrosion resistant and high temperature strength and is easy to fabricate, weld and treat with heat, and maintain an invariable size even after heat treatment. e steels are furnished in the solution annealed condition and they achieve full properties through martensitic precipitation aging a relatively simple, low temperature heat treatment. As is true of the heat treating procedures, aging is a time/temperature dependent reaction. Therefore, the objective of this stud)'was consideration of fatigue characteristics according as Nb(niobium) content and time/temperature of heat treatment change. Also the stress analysis, fatigue lift, and stress intensity factor were compared with experiment results and FEA(finite element analysis) result. The maximum ftresses of)( Y, and Z axis direction showed about $2.12\times$10$^{2}$MPa, $4.40\times$10$^{2}$MPa and $1.32\times$10$^{2}$MPa respectively. The fatigue lives showed about $7\%$ lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about $3.5~ 10\%$ than that of the experiment result showing that the longer fatigue crack ten添 the hi인or error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

A Study on the Creep Behaviour of Al-Zn-Mg Alloy (Al-Zn-Mg 계 합금의 Creep 거동에 관한 연구)

  • Park, Jong Geon;Choi, Jae Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.79-88
    • /
    • 1993
  • The static creep mechanism and behaviour of Al-Zn-Mg alloy have been investigated under condition of constant stress tension creep test in the temperature and stress range of $170-260^{\circ}C$ and 5-12.5 $kg/mm^2$ respectively. The experimental result are follows : The stress exponent value for creep was observed to about 7.3-6.43 and the activation energy for creep deformation was 44-41 kcal/mol. Larson-Miller parameter P for the crept specimens under the creep condition was obtained as P = (T + 460) (log $t_r$ + 8.6). Emperical equation for the creep rate was obtained by the computer simulation as follows. $${\varepsilon}\;=\;\exp[(-5.519{\times}10^{-4}{\sigma}+2.33{\times}10^{-2})T-6.98{\sigma}+18.295]{\times}{\sigma}^{-0.0142+10.18}\exp[\frac{(-6{\sigma}+47.8)1000}{RT}]$$ Fracture was dominated by intergranular mechanism over the experimental range.

  • PDF

The Study on the Mechanical Properties with Various Control Cooling Conditions for Ball Joint Socket

  • Bae M.H.;Lee J.Y.;Jeong S.C.;Seo S.Y.;Kang S.W.;Lim K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.138-142
    • /
    • 2003
  • In this study, to show well favorable characteristics of warm forged material, we compared and analyzed microstructure and mechanical properties of general hot-forged material which finished heat treatment with warm-forged material which was produced by control cooling condition. Along with this, we suggested better direction of control cooling condition to be able to remove heat treatment process while satisfying mechanical properties.

  • PDF

superconducting properties of Bi-2223 tapes with various heat treatment condition (열처리 온도 및 분위기 변화에 따른 Bi-2223 초전도 선재에서의 특성변화)

  • 하동우;이동훈;하홍수;오상수;김홍대;양주생;윤진국;최정규;권영길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.527-530
    • /
    • 2002
  • A lot of efforts have been focused on the optimization of PIT parameters for Bi-2223/Ag wire. In this paper, initial annealing of Bi-2223/Ag wire to transform Bi-2212 orthorhombic from Bi-2212 tetragonal Precursor was investigated. This initial annealing step at low oxygen partial pressure were to transform Bi-2212 orthorhombic structure and to reduce the formation of second phases at superconducting wire. However Bi-2223 Phases were appeared at higher annealing temperature. Critical currents(Je) of Bi-2223/Ag tapes were sintered at low oxygen Partial pressure were higher than that of the wires sintered at atmosphere condition. In order to investigate the effect of rolling reduction ratio, Bi-2223/Ag HTS tapes were rolled with different reduction ratio. There were no clear difference of Je and filaments shape with various rolling reduction ratio.

  • PDF

Design for Thermite Reaction Efficiency Improvement of Nb-Ni Mother Alloy (Nb-Ni 모 합금의 테르밋 반응 효율 향상 방안 설계)

  • Jin Uk Gwon;Hye Sung Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • In this study, the effect of mixing condition of raw material powders possessing various particle size and particle size distribution on thermite reaction efficiency was investigated. When fine raw powders are used, rather the reaction yield tends to decrease due to agglomeration. In contrast, coarse raw powders make deteriorate the contact area between raw material powders containing Al reducing agent. To ensure the optimal thermite reaction efficiency, it is required to optimize a mixture condition of raw material powders prior to thermite reaction. From the current experiment, the maximum thermite reaction efficiency is 77%, which came from Nb2O5 + NiO +Al mixtures with size distribution from 9.25 to 22.63 ㎛.

Effect of heat treatment on the structural characteristics and properties of silk sericin film

  • Park, Chun Jin;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.2
    • /
    • pp.36-42
    • /
    • 2018
  • Recently, silk sericin has attracted attention because of its unique properties as a biomaterial, including its UV resistance, moisturizing effect on skin, and wound-healing effect. Therefore, the preparation of sericin in various forms such as gel, film, fiber, and sponge is studied for cosmetic and biomedical applications, and the effect of the preparation conditions on the structure and properties of sericin forms is examined to maximize its performance. In this study, silk sericin films were prepared under different preparation conditions and heat-treated at high temperatures ($100-250^{\circ}C$) to examine the effect of heat treatment on the film structure. The order of the crystallinity index of the untreated sericin film is as follows: F25 (sericin film cast from formic acid) > WE25 (ethanol treated sericin film cast from water at $250^{\circ}C$) > W25 (sericin film cast from water at $250^{\circ}C$) > W100 (sericin film cast from water at $100^{\circ}C$). As the heat-treatment temperature was increased, the color of the sericin films changed gradually from colorless to yellow, brown, and black depending on the temperature. The crystallinity of the sericin film changed after the heat treatment, depending on the preparation condition. Whereas a sericin film cast from formic acid (F25) started to lose its crystallinity at $200^{\circ}C$, thus undergoing the highest loss of crystallinity among the sericin films studied, the rest (W25, WE25, and W100) showed a decrease in crystallinity at $250^{\circ}C$, owing to the disruption of the ${\beta}$-sheet crystallites due to heat.

Effects of Heat Exposure and Restricted Feeding on Behavior, Digestibility and Growth Hormone Secretion in Goats

  • Hirayama, Takuji;Katoh, Kazuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.655-658
    • /
    • 2004
  • Heat stress is known to affect physiological systems in goats. This study investigated changes in nutrient digestibility, behavior and growth hormone secretion among goats in a hot environment (H; 35${\pm}$ 1.2$^{\circ}C$, [RH] 80${\pm}$7.2%, 13 d), and in a thermoneutral environment (T; 20${\pm}$0.6$^{\circ}C$, [RH] 80${\pm}$3.4%, 20 d), and accompanied by the same restricted diet as provided in the hot environment. The following results were obtained: rectal temperature and water intake were higher in the H treatment than in the T treatment or TR treatment, while hay consumption was lower. CP, NDF and ADF digestibility was highest in H treatment. Time spent eating in the H treatment was also the highest, followed in order by T treatment and TR treatment. Ruminating time was lower in H treatment than in T treatment or TR treatment, and reposing time was highest in the TR treatment. Growth hormone concentrations in T increased 4.5 h after feeding. In H, growth hormone concentrations increased 0.5 h after feeding. However, growth hormone concentrations were not changed following TR feeding. In conclusion, heat exposure in goats decreased feed intake, but increased digestibility. However, when goats in a thermoneutral environment received the same restricted feeding as they received in the hot environment, digestibility increased. Between the H treatment and TR treatment, the changes in digestibility were accomplished by coordinate changes in hormone secretion in order to maintain body homeostasis. To maintain energy balance under a hot temperature or a restricted feeding condition, goats may control their metabolism by changing growth hormone release.

The Effect of Heat Treatment on the Microstructures and Mechanical Properties of Inconel 713C Alloy Vacuum Investment Castings (진공 정밀주조한 Inconel 713C 합금의 조직과 기계적 성질에 미치는 열처리의 영향)

  • Yoo, Byung-Ki;Choi, Hak-Kyu;Park, Heung-Il;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.40 no.2
    • /
    • pp.16-24
    • /
    • 2020
  • The effect of a heat treatment on the microstructure and mechanical properties of Inconel 713C alloy vacuum investment castings were investigated. The microstructure of the as-cast state was observed, showing well-developed dendrite structures and distributed carbide particles and solidified massive precipitates in the grain or grain boundary during solidification, in this case the γ′ phase and MC particles. During a heat treatment, the γ phase matrix was reinforced by solid solution elements, carbide particles from the film morphology precipitated along the grain boundary, and many micro-precipitates of second γ′ phases 0.2 ㎛~2 ㎛ in size were newly formed in the γ phase matrix according to SEM-EDS analysis results. The tensile strength at a high temperature (850℃) decreased slightly becoming comparable with the room-temperature result, while the hardness value of the specimen after the vacuum heat treatment increased by approximately 19%, becoming similar to that of the as-cast condition. However, the impact values at room temperature and low temperature (-196℃) were approximated; this alloy was mostly not affected by an impact at a low temperature. In the observations of the fracture surface morphologies of the specimens after the tensile tests, the fractures at room temperature were a mix of brittle and ductile fractures, and an intergranular fracture in the inter-dendrite structure and some dimples in the matrix were observed, whereas the fractures at high temperatures were ductile fractures, with many dimples arising due to precipitation. It was found that a reinforced matrix and precipitates of carbide and the γ′ phase due to the heat treatment had significant effects, contributing greatly to the excellent mechanical properties.

The Effect of Different Heat Treatment Processes on Critical Properties of Bi2212/Ag ROSAT Wire (열처리 공정 변화에 따른 Bi2212/Ag ROSAT 선재의 임계 특성)

  • Oh, W.S.;Jang, G.E.;Kim, S.C.;Ha, D.W.;Oh, S.S.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.111-114
    • /
    • 2007
  • We have investigated the effect of different heat treatment processes on electrical and magnetic properties of Bi2212/Ag ROSAT wire. The ROSAT wire was fabricated by stacking and arranging 12 filaments Bi2212/Ag tapes in triple rotation symmetry in a Ag tube. ROSAT wires have been prepared using a partial melting method with changing $T_{max}$ and $T_a$ in oxygen atmosphere. The highest critical current density($J_c$) at 65 K under 0 T was $21,158\;A/cm^2$ for wire prepared $890\;^{\circ}C(T_{max})$ and $840\;^{\circ}C(T_a)$, respectively. SEM results indicated that the wire prepared at $890\;^{\circ}C(T_{max})$ and $840\;^{\circ}C(T_a)$ showed better directional phases than the other samples. However the result of magnetic susceptibility measurement indicates that the wire prepared $890\;^{\circ}C(T_{max})$ and $835\;^{\circ}C(T_a)$ had better superconducting phases than the other samples. It was revealed that heat treatment temperature was important factor for superconducting properties of the ROSAT wire.

  • PDF

Effect of Heat Treatment Condition on Fine Structure of High strength Polyacrylonitrile(PAN) Fibre(III) (고강력 폴리아크릴로니트릴 섬유의 열처리에 의한 미세구조 변화(III))

  • Bang, Yun Hyuk;Lee, Chun Yong;Kim, Han Do;Lee, Mun Cheul;Cho, Hyun Hok
    • Textile Coloration and Finishing
    • /
    • v.7 no.2
    • /
    • pp.24-31
    • /
    • 1995
  • The properties of carbon fibers made from PAN are controlled by the heat treatment conditions. The length changes of high strength homo-PAN and co-PAN (acrylonitrile/acrylamide= 98/2wt% ) fibers under constant tensile stress during heat treatment in nitrogen gas were investigated by measuring the shrinkage behavior. In order to elucidate the relation between the length and fine structure change, the measurements of the crystalline orientation and birefringence index etc. were made for the fibers treated under linear heating up to 27$0^{\circ}C$. There are two regions in the length change with heat treatment temperature. The change in the initial period is mainaly due to the relaxation of amorphous molecular chain confined by the fiber-manufacture process. The length change in later period is considered to arise as cyclization reactions. The co-PAN fibers caused a larger shrinkage, while the onset of the shrinkage change in later period is, shifted to lower temperature. Significant morphological changes are shown to precede onset of the cyclization reactions and also during these reactions.

  • PDF