• 제목/요약/키워드: Heat transportation

검색결과 318건 처리시간 0.026초

난류발생기를 가지는 원형 파이프내에서의 마찰저감 및 열전달율에 관한 실험적 연구 (Experimental Study on the Drag Reduction & Heat Transfer Ratio in the Circular Pipe with Swirl Generater)

  • 김성수;조성환;윤석만
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.430-435
    • /
    • 2008
  • Total lengths of domestic pipe network for district heating system are above about 2,500Km. A lots of pumping power for heat transportation through long pipe are required by the flow friction of pipe surface. Until now there have been considered about various methods to reduce the flow friction for district heating system such as using surfactants and turbulence promoters by swirl flow and baffles etc. At this study, swirl flow generator was tested about the possibility to increase the heat transfer ratio at the heat exchanger in the case which the suppling water temperature increased from $50^{\circ}C$ until $120^{\circ}C$. Experimental results showed that the heat transfer ratio increased and also pressure increase ratio increased simultaneously in the case which swirl flow generator installed. The amount of the increasing ratio for heat transfer and pressure were reached until 4.33% and 11% at the case of $120^{\circ}C$ suppling temperature which domestic district heating system were using.

  • PDF

가열 전극 통합 채널 공진기의 진공 환경 구동에 의한 열물성 측정의 민감도 향상 (Sensitivity Enhancement for Thermophysical Properties Measurements via the Vacuum Operation of Heater-integrated Fluidic Resonators)

  • 고주희;이정철
    • 센서학회지
    • /
    • 제32권1호
    • /
    • pp.39-43
    • /
    • 2023
  • Microscale thermophysical property measurements of liquids have been developed considering the increasing interest in the thermal management of cooling systems and energy storage/transportation systems. To accurately predict the heat transfer performance, information on the thermal conductivity, heat capacity, and density is required. However, a simultaneous analysis of the thermophysical properties of small-volume liquids has rarely been considered. Recently, we proposed a new methodology to simultaneously analyze the aforementioned three intrinsic properties using heater-integrated fluidic resonators (HFRs) in an atmospheric pressure environment comprising a microchannel, resistive heater/thermometer, and mechanical resonator. Typically, the thermal conductivity and volumetric heat capacity are measured based on a temperature response resulting from heating using a resistive thermometer, and the specific heat capacity can be obtained from the volumetric heat capacity by using a resonance densitometer. In this study, we analyze methods to improve the thermophysical property measurement performance using HFRs, focusing on the effect of the ambience around the sensor. The analytical method is validated using a numerical analysis, whose results agree well with preliminary experimental results. In a vacuum environment, the thermal conductivity measurement performance is enhanced, except for the thermal conductivity range of most gases, and the sensitivity of the specific heat capacity measurement is enhanced owing to an increase in the time constant.

마이크로캡슐 잠열재 슬러리를 적용한 증기압축식 냉동기의 성능 모델링 (Simulation of Refrigeration System with MPCM Slurry as Secondary Fluid)

  • 최종민;김용찬;천덕우;강훈;윤준상;조한호;김영배;이호성;최광민;강용화;전종욱
    • 설비공학논문집
    • /
    • 제18권6호
    • /
    • pp.501-508
    • /
    • 2006
  • MPCM (Microencapsulated Phase Change Material) slurries show several advantages over the sensible heat transportation system. In this study, a numerical model for a vapor compression refrigeration system using MPCM slurries as a secondary fluid through an evaporator was developed, and the system performance was compared with that using water. Generally, the MPCM system showed higher performance than the water system. The COP of the MPCM system was higher by 16.6 to 18.6% than that of the water system at all conditions. The MPCM slurry yields better performance in the aspect of heat transfer and heat transportation comparing to the sensible heat transfer medium such as water.

도로기상정보체계 활성화를 위한 노면온도예측 모형 개발 (A Road Surface Temperature Prediction Modeling for Road Weather Information System)

  • 양충헌;박문수;윤덕근
    • 대한교통학회지
    • /
    • 제29권2호
    • /
    • pp.123-131
    • /
    • 2011
  • 본 연구에서는 지표면과 대기사이의 열-에너지 균형원리를 이용한 노면온도예측모형을 개발하였다. 본 연구에서 개발된 노면온도예측모형은 두 가지 모듈로 구성되는데 Canopy 1은 지표면과 대기 간의 열 교환을 묘사하기 위한 것이고, Canopy 2는 열에너지 교환 과정에서 포장체 특성을 반영하기 위한 것이다. 모형 수행에 필요한 다양한 입력변수는 기상청으로부터 수집하였다. 개발된 모형의 성능을 평가하기 위해 청원-상주 간 고속도로 상 문의교 지점에 설치된 접촉식 노면온도측정센서로부터 수집한 노면온도자료와 모형 수행을 통해 나온 결과 값을 비교 하였다. 이러한 비교는 동절기(12월)와 동절기 외 기간(10월)에 걸쳐 수행되었다. 비교 결과, 두 온도의 평균오차 값이 ${\pm}2^{\circ}C$ 범위 내에 있어, 모형의 성능이 매우 우수한 것으로 판단된다. 이러한 연구는 동절기 도로관리에 다양하게 사용될 것으로 사료되고, 특히 도로 기상정보체계 운영에 핵심이 되는 노면온도 예측 알고리즘으로 사용될 수 있는 기초 연구가 될 것이다.

아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 성능에 관한 실험적 연구 (Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System)

  • 이동원;김정배
    • 에너지공학
    • /
    • 제20권1호
    • /
    • pp.30-35
    • /
    • 2011
  • 2중관형과 판형 열교환기에 에틸렌 클리콜-물 수용액으로 만들어진 아이스슬러리를 적용하는 경우의 유동 및 열적 특성을 규명하기 위하여 실험을 수행하였다. 아이스슬러리의 질량유속과 얼음 분율은 각각 800에서 3500 kg/$m^2s$과 0에서 25%이었다. 실험을 통해, 압력강하와 열전달율은 질량유속과 얼음 분율에 따라 증가하였다. 그러나 얼음 분율의 효과는 높은 질량유속 영역에서는 크지 않은 것으로 나타났다. 낮은 질량유속에서는 압력강하와 열전달율의 급속한 증가가 질량 유속에 관계되는 것으로 나타났다.

멤브레인형 LNG선 Cargo의 만선항해시 열전달 해석 및 BOG 평가 (Heat Transfer Analysis and BOG Estimation of Membrane-Type LNG Cargo during Laden Voyage)

  • 허진욱;이영주;조진래;하문근;이중남
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.393-400
    • /
    • 2003
  • Excessive generation of BOG during the LNG transportation not only causes the severe financial loss but also leads to the unexpected disaster. Therefore, the carrier cargo insulating interior LNG should be carefully designed based upon an accurate heat transfer analysis. However. it is not simple to analyze heat transfer of LNG cargo, because it is in a complex insulation structure and LNG carrier experiences a complicated heat transfer according to various kinds of voyage conditions. In this paper, we carried out the transient finite element heat transfer analysis for a cargo of Mark-111 membrane-type LNG carrier during laden voyage, and we compared heat transfer rates between considering natural convection and considering conduction. For this goal, we developed a PCL program incorporating with a commercial MSC/NASTRAN FEM code.

도로 포장 기술 개선에 따른 대기 경계층의 열 변화에 관한 연구 (A Study on the Impact of an Improved Road Pavement Technology on the Thermal Structure of Atmospheric Boundary Layer)

  • 이순환;김인수;김해동
    • 한국대기환경학회지
    • /
    • 제24권5호
    • /
    • pp.551-561
    • /
    • 2008
  • In order to clarify the impact of anti-heat insulation pavement on the thermal structure of atmospheric boundary layer, field experiments and numerical simulations were carried out. Field experiment with various pavements were also conducted for 24 hours from 09LST 19 June 2007. And numerical experiment mainly focused on the impact of albedo variation, which is strongly associated with thermal characteristics of insulated pavement materials, on the temporal variation of planterly boundary layer. Numerical model used in this study is one dimension model with Planterly Boundary Layer developed by Oregon State University (OSUPBL). Because anti-heat insulation pavement material shows higher albedo value, not only maximum surface temperature but also maximum surface air temperature on anti-heat insulation pavement is lower than that on asphalt. The maximum value of surface temperature only reach on $49.5^{\circ}C$. As results of numerical simulations, surface sensible heat flux and the height of mixing layer are also influenced by the values of albedo. Therefore the characteristics of urban surface material and its impact on atmosphere should be clarified before the urban planning including improvement of urban heat environment and air quality.

PERSPECTIVES OF NUCLEAR HEAT AND HYDROGEN

  • Lee, Won-Jae;Kim, Yong-Wan;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.413-426
    • /
    • 2009
  • Nuclear energy plays an important role in world energy production by supplying 6% of the world's current total electricity production. However, 86% of the energy consumed worldwide to produce industrial process heat, to generate electricity and to power the transportation sector still originates in fossil fuels. To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels in these sectors is urgently required. Clean hydrogen energy is one such alternative. Clean hydrogen can play an important role not only in synthetic fuel production but also through powering fuel cells in the anticipated hydrogen economy. With the introduction of the high temperature gas-cooled reactor (HTGR) that can produce nuclear heat up to $950^{\circ}C$ without greenhouse gas emissions, nuclear power is poised to broaden its mission beyond electricity generation to the provision of nuclear process heat and the massive production of hydrogen. In this paper, the features and potential of the HTGR as the energy source of the future are addressed. Perspectives on nuclear heat and hydrogen applications using the HTGR are discussed.

이중 분사 적용에 따른 단기통 디젤엔진의 연소특성에 관한 연구 (Study on Combustion Characteristics of Single-Cylinder Diesel Engine by Double Injection)

  • 이종태;신달호;김형준;윤창완;김정수;박수한
    • 한국연소학회지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2017
  • This paper presents an experimental study on the effect of double injection strategies on combustion characteristics in a single-cylinder diesel engine. These studies are applied to the double injection strategies, such as $2^{nd}$ injection timing variations with fixed injection interval (8 degree) and variations of injection pressures with fixed injection timing and intervals. The injection quantity was 7 + 7 mg for double injections, and 14 mg for single injection. When the injection pressure was increased, the ignition delay was shortened, and the ISFC (indicated specific fuel consumption) was increased due to the fast termination of combustion by the shortened energizing duration. In addition, the retardation of injection timings toward TDC (top dead center) caused the reduction of ignition delay and the decrease of ISFC with the decrease of FMEP (friction mean effective pressure).