• Title/Summary/Keyword: Heat transform temperature

Search Result 99, Processing Time 0.03 seconds

Interactions in a transversely isotropic new modified couple stress thermoelastic thick circular plate with two temperature theory

  • Parveen Lata;Harpreet Kaur
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.261-276
    • /
    • 2023
  • This article is an application of new modified couple stress thermoelasticity without energy dissipation in association with two-temperature theory. The upper and lower surfaces of the plate are subjected to an axisymmetric heat supply. The solution is found by using Laplace and Hankel transform techniques. The analytical expressions of displacement components, conductive temperature, stress components and couple stress are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect of two temperature is shown on the various components.

Heat Transfer Analysis of the Radiation Shield in Cryogenic Systems (극저온 시스템의 복사쉴드의 열전달 해석)

  • 정은수;장호명;박희찬;양형석
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.124-128
    • /
    • 2002
  • A numerical model to obtain the temperature distribution in a radiation shield of cryogenic systems was proposed. Conformal mapping was used to transform the eccentric physical region of the upper plate to the concentric numerical region. The effects of the thickness of the radiation shield, the emissivities of the vacuum chamber and the radiation shield, and the eccentricity between the centers of the upper plate and the contact area with a cryocooler on the maximum temperature difference in a radiation shield were shown.

Effect of Heat Treatment on Torsion Characteristics of High Nitrogen Steel Wire for Overhead Conductors (송전선용 고질소강선의 비틀림 특성에 미치는 열처리의 영향)

  • 김정훈;김봉서;박수동;김병걸;이희웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.190-195
    • /
    • 2004
  • The effect of heat treatment on torsion characteristics of high nitrogen steel wire has been studied by torsion test, tensile test, specific resistivity, X-ray diffraction and scanning electron microscopy. After heat treatment at 600∼$700^{\circ}C$, torsion cycle was increased with increasing temperature. Especially, in case of high nitrogen steel wire heat teated at $650^{\circ}C$, torsion cycle was sharply increased. It is estimated that cold worked high nitrogen steel wire started to recrystallize and phase transform at 64$0^{\circ}C$ in air atmosphere.

TRANSIENT THERMOELASTIC STRESS ANALYSIS OF A THIN CIRCULAR PLATE DUE TO UNIFORM INTERNAL HEAT GENERATION

  • GAIKWAD, KISHOR R.;NANER, YOGESH U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2020
  • The present work aims to analyzed the transient thermoelastic stress analysis of a thin circular plate with uniform internal heat generation. Initially, the plate is characterized by a parabolic temperature distribution along the z-direction given by T = T0(r, z) and perfectly insulated at the ends z = 0 and z = h. For times t > 0, the surface r = a is subjected to convection heat transfer with convection coefficient hc and fluid temperature T. The integral transform method used to obtain the analytical solution for temperature, displacement, and thermal stresses. The associated thermoelastic field is analyzed by making use of the temperature and thermoelastic displacement potential function. Numerical results are carried out with the help of computational software PTC Mathcad Prime-3.1 and shown in figures.

ANALYSIS OF NON-INTEGER ORDER THERMOELASTIC TEMPERATURE DISTRIBUTION AND THERMAL DEFLECTION OF THIN HOLLOW CIRCULAR DISK UNDER THE AXI-SYMMETRIC HEAT SUPPLY

  • KHAVALE, SATISH G.;GAIKWAD, KISHOR R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.1
    • /
    • pp.67-75
    • /
    • 2022
  • Analysis of non-integer order thermoelastic temperature distribution and it's thermal deflection of thin hollow circular disk under the axi-symmetric heat supply is investigated. Initially, the disk is kept at zero temperature. For t > 0 the parametric surfaces are thermally insulated and axi-symmetric heat supply on the thickness of the disk. The governing heat conduction equation has been solved by integral transform technique, including Mittag-Leffler function. The results have been computed numerically and illustrated graphically with the help of PTC-Mathcad.

Orthotropic magneto-thermoelastic solid with multi-dual-phase-lag model and hall current

  • Lata, Parveen;Himanshi, Himanshi
    • Coupled systems mechanics
    • /
    • v.10 no.2
    • /
    • pp.103-121
    • /
    • 2021
  • The present research deals with the investigation of the effect of hall current in an orthotropic magneto-thermoelastic medium with two temperature in the context of multi-phase-lag heat transfer due to thermomechanical sources. The bounding surface is subjected to linearly distributed and concentrated loads(mechanical and thermal source).Laplace and Fourier transform techniques are used to solve the problem. The expressions for displacement components,stress components and conductive temperature are derived in transformed domain and furtherin physical domain with the help of numerical inversion techniques. The effect ofrotation and hall parameter hasshown with the help of graphs.

Fractional effect in an orthotropic magneto-thermoelastic rotating solid of type GN-II due to normal force

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.503-511
    • /
    • 2022
  • In this article, we have examined the effect of fractional order parameter in a two-dimensional orthotropic magneto-thermoelastic solid in generalized thermoelasticity without energy dissipation with fractional order heat transfer in the context of hall current, rotation and two-temperature due to normal force. Laplace and Fourier transform techniques are used to obtain the solution of the problem. The expressions for displacement components, stress components, current density components and conductive temperature are obtained in transformed domain and then in physical domain by using numerical inversion method. The effect of fractional parameter on all the components has been depicted through graphs. Some special cases are also discussed in the present investigation.

Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.343-351
    • /
    • 2020
  • The present research deals with the multi-dual-phase-lags thermoelasticity theory for thermoelastic behavior of transversely isotropic thermoelastic thin circular plate The Laplace and Hankel transform techniques have been used to find the solution of the problem. The displacement components, stress components, and conductive temperature distribution are computed in the transformed domain with the radial distance and further determined in the physical domain using numerical inversion techniques. The effect of rotation and two temperature are depicted graphically on the resulting quantities.

A study on thermo-elastic interactions in 2D porous media with-without energy dissipation

  • Alzahrani, Faris;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.523-531
    • /
    • 2021
  • The generalized thermoelastic analysis problem of a two-dimension porous medium with and without energy dissipation are obtained in the context of Green-Naghdi's (GNIII) model. The exact solutions are presented to obtain the studying fields due to the pulse heat flux that decay exponentially in the surface of porous media. By using Laplace and Fourier transform with the eigenvalues scheme, the physical quantities are analytically presented. The surface is shocked by thermal (pulse heat flux problems) and applying the traction free on its outer surfaces (mechanical boundary) through transport (diffusion) process of temperature to observe the analytical complete expression of the main physical fields. The change in volume fraction field, the variations of the displacement components, temperature and the components of stress are graphically presented. Suitable discussion and conclusions are presented.

Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.359-367
    • /
    • 2017
  • In this work, transient heat transfer analysis of functionally graded (FG) carbon nanotube reinforced nanocomposite (CNTRC) cylinders with various essential and natural boundary conditions is investigated by a mesh-free method. The cylinders are subjected to thermal flux, convection environments and constant temperature faces. The material properties of the nanocomposite are estimated by an extended micro mechanical model in volume fraction form. The distribution of carbon nanotube (CNT) has a linear variation along the radial direction of axisymmetric cylinder. In the mesh-free analysis, moving least squares shape functions are used for approximation of temperature field in the weak form of heat transform equation and the transformation method is used for the imposition of essential boundary conditions. Newmark method is applied for solution time depended problem. The effects of CNT distribution pattern and volume fraction, cylinder thickness and boundary conditions are investigated on the transient temperature field of the nanocomposite cylinders.