• Title/Summary/Keyword: Heat transfer equation

Search Result 558, Processing Time 0.025 seconds

Convective Boiling Two-phase Flow in Trapezoidal Microchannels : Part 2-Heat Transfer Characteristics (사다리꼴 미세유로의 대류비등 2상유동 : 2부-열전달 특성)

  • Kim, Byong-Joo;Kim, Geon-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.718-725
    • /
    • 2011
  • Characteristics of flow boiling heat transfer in microchannels were investigated experimentally. The microchannels consisted of 9 parallel trapezoidal channels with each channel having 205 ${\mu}m$ of bottom width, 800 ${\mu}m$ of depth, $3.6^{\circ}$ of sidewall angle, and 7 cm of length. Tests were performed with R113 over a mass velocity range of 150~920 $kg/m^2s$, heat flux of 10~100 $kW/m^2$ and inlet pressures of 105~195 kPa. Flow boiling heat transfer coefficient in microchannels was found to be dominated by heat-flux. However the effect of mass velocity was not significant. Contrary to macrochannel trends, the heat transfer coefficient was shown to decrease with increasing thermodynamic equilibrium quality. A new correlation suitable for predicting flow boiling heat transfer coefficient was developed based on the laminar single-phase heat transfer coefficient and the nucleate boiling dominant equation. Comparison with the experimental data showed good agreement.

Establishing non-linear convective heat transfer coefficient

  • Cuculic, Marijana;Malic, Neira Toric;Kozar, Ivica;Tibljas, Aleksandra Deluka
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.107-119
    • /
    • 2022
  • The aim of the work presented in this paper is development of numerical model for prediction of temperature distribution in pavement according to the measured meteorological parameters, with introduction of non-linear heat transfer coefficient which is a function of temerature difference between the air and the pavement. Developed model calculates heat radiated from the pavement back in the air, which is an important part of the heat trasfer process in the open air surfaces. Temperature of the pavement surface, heat radiation together with many meteorological parameters were measured in series during two years in order to validate the model and calibrate model parameters. Special finite element method for temperature heat transfer towards the soil together with the time integration scheme are used to solve the governing equation. It is proved that non-linear heat transfer coefficient, which is a function of time and temperature difference between the air and the pavement, is required to decribe this phenomena. Proposed model includes heat tranfer coefficient callibration for specific climate region, through the iterative inverse procedure.

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (II) - The Effect of the Reynolds Number (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각특성에 관한 연구(II) -레이놀즈 수의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.509-517
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To estimate the thermal performance of the heat-generating components arranged by $5\times11$ in channel flow, three variables are used: the inlet velocity, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. The experimental result is in a good agreement with the numerical analysis. The heat transfer coefficient increases as the Reynolds number increases, while the thermal wake function calculated for each row decreases as the Reynolds number increases. In addition, it is found that Nu-Re correlation equation is Identical to the previous studies, and the empirical correlation equation between the thermal wake function and Re is presented.

A study on the forced convection heat transfer in the vertical copper tube at uniform wall heat flux (균일한 열유속에서의 수직동관내의 강제대류 열전달에 관한 연구)

  • Baek, Go-Gil;Cha, Ji-Yeong;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.4
    • /
    • pp.213-220
    • /
    • 1979
  • A number of methods has been developed for calculation of heat transfer in the vertical round tube under conditions of forced convection with uniform heat flux at wall. I would like to express hereby one of applications of this study in the design of heat exchanger instruments for water flow at $15.8^{\circ}C(p_r=8)$ used frequently in our daily life. Also all the results are investigated for forced convective heat transfer in the case of heated water-flow at uniform wall heat flux in the vortical round copper tube, where the ratio of length to diameter will be 44. They are well in agreement with Gratz and Kraussold equation respectively in laminar and transition flow range. In turbulent flow in the range from Re=10,000 to 65,000, the experimental formula Is show as follows ; Nu=0.023 $R_e^{0.814}\;P_r^{0.4}$. And this is agreed with Dittus - Boelter equation when Reynolds number exponent increases from 0.80 to 0.814.

  • PDF

Experimental study on the heat flux and heat transfer coefficient in a spark ignition engine (스파크 점화기관의 열유속 및 열전달 계수에 대한 실험적 연구)

  • Han, Seong-Bin;Gwon, Yeong-Jik;Lee, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1466-1474
    • /
    • 1997
  • In order to design and develop a spark ignition engine, many studies must be preceded about the characteristics of thermal flow. For measurement of transient wall temperature thin film thermocouples of Bendersky type were manufactured and these probes were fixed into the wall of combustion chamber. Surface wall temperatures were measured in experiments of various engine speeds. Transient heat fluxes were calculated from the wall temperature measurements. Pressure was measured from combustion chamber using pressure transducer and gas temperatures were calculated using the state equation of ideal gas. And instantaneous heat transfer coefficients were obtained. It will be the basic data for the formulae of instantaneous heat transfer coefficients.

Numerical Analysis of the Wavelength Dependence in Low Level Laser Therapy (LLLT) Using a Finite Element Method

  • Yoon, Jin-Hee;Park, Ji-Won;Youn, Jong-In
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.77-83
    • /
    • 2010
  • Purpose: The aim of this study was to do numerical analysis of the wavelength dependence in low level laser therapy (LLLT) using a finite element method (FEM). Methods: Numerical analysis of heat transfer based on a Pennes' bioheat equation was performed to assess the wavelength dependence of effects of LLLT in a single layer and in multilayered tissue that consists of skin, fat and muscle. The three different wavelengths selected, 660 nm, 830 nm and 980 nm, were ones that are frequently used in clinic settings for the therapy of musculoskeletal disorders. Laser parameters were set to the power density of 35.7 W/$cm^2$, a spot diameter of 0.06 cm, and a laser exposure time of 50 seconds for all wavelengths. Results: Temperature changes in tissue based on a heat transfer equation using a finite element method were simulated and were dominantly dependent upon the absorption coefficient of each tissue layer. In the analysis of a single tissue layer, heat generation by fixed laser exposure at each wavelength had a similar pattern for increasing temperature in both skin and fat (980 nm > 660 nm > 830 nm), but in the muscle layer 660nm generated the most heat (660 nm ${\gg}$ 980 nm > 830 nm). The heat generation in multilayered tissue versus penetration depth was shown that the temperature of 660 nm wavelength was higher than those of 830 nm and 980 nm Conclusion: Numerical analysis of heat transfer versus penetration depth using a finite element method showed that the greatest amount of heat generation is seen in multilayered tissue at = 660 nm. Numerical analysis of heat transfer may help lend insight into thermal events occurring inside tissue layers during low level laser therapy.

Evaporating heat transfer characteristics of R-22 alternative hydrocarbon refrigerants at heat exchanger using grooved inner tube (내면 핀관을 사용하는 열교환기에서 R-22 대체 탄화수소계 냉매의 증발 열전달 특성)

  • 홍진우;박승준;노건상;구학근;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.414-420
    • /
    • 2000
  • In this paper, evaporation heat transfer characteristics at a inner grooved tube were studied using a new natural refrigerants R-290, R-600a and HCFC refrigerant R-22. Experiments were performed in the inner tube with outside diameter of 12.70mm, having 75 fins with a fin height of 0.25mm. The following results were obtained from this research. On the evaporating heat transfer characteristics, the maximum increment of heat transfer coefficient was found in R-290. Average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smooth tube. Comparing the heat transfer coefficient between experimental results and simulation data of other's, the Kandlikar's correlated equation was closely approximated to the author's experimental results in the smooth tube or grooved inner one.

  • PDF

Effect of Circumferential Wall Heat Conduction on Boundary Conditions for Convection Heat Transfer from a Circular Tube in Cross Flow (원관 주위의 대류 열전달에서 경계조건에 대한 원주방향 열전도의 영향)

  • 이상봉;이억수;김시영
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • With uniform heat generation from the inner surface of the cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer is investigated for the case of forced convection around horizontal circular tube in cross flow of air. The wall conduction number which can be deduced from the governing energy equation should be used to express the effect of circumferential wall heat conduction. It is demonstrated that the circumferential wall heat conduction influences local Nusselt numbers of one-dimensional and two-dimensional solutions.

  • PDF

Thermal Stress Analysis for Life Prediction of Power Plant Turbine Rotor (발전용 터빈 로우터의 수명예측을 위한 열응력 해석)

  • 임종순;허승진;이규봉;유영면
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.276-287
    • /
    • 1990
  • In this paper research result of transient thermal stress analysis of power plant turbine rotors for life prediction under severs operating conditions is presented. Galerkin's recurrence scheme is used for numerical solution of discretized FEM equation of transient heat conduction equation. Boundary conditions for the equation and operating conditions are intensively investigated for accurate life prediction of turbine rotors in operation. A computer program for on-site application is developed and tested. Distribution of thermal stress in turbine rotors during various operating condition is analyzed with the program and it is found that the peak thermal stress appears during cold stage conditions at the first stage of high pressure rotors.