• Title/Summary/Keyword: Heat transfer enhancement factor

Search Result 71, Processing Time 0.021 seconds

Flow and Heat Transfer Characteristics due to Staggered Arrangement of Heat Pipes in Channels with Heat Pipes and Fins (휜-히트파이프로 구성된 채널에서 히트파이프의 엇갈림배열에 따른 유동 및 열전달 특성)

  • 김성훈;진윤근;김철주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.871-879
    • /
    • 2002
  • The characteristics of flow and heat transfer in the heat exchanger of heat pipes with fins have been studied numerically for cooling enhancement of electronic components of KTX (Korea Train eXpress). Numerical analysis and methodology have been conformed by comparing the experimental results for inlined array of heat pipes. The staggered arrangement of heat pipes has been proposed in order to achieve heat transfer enhancement. As results, the geometry change to the staggered array is conformed to increase the heat transfer of the system accompanied by an increase of pressure drop. The current results of friction factor and Colburn j factor are presented in terms of Reynolds number and staggered distance, and are expected to use for design and manufacture of such a system.

Numerical Analysis on the Heat Transfer Enhancement by Modified Lovour Fin (개량 루버핀에 의한 열전달 성능향상에 관한 연구)

  • Chung, Jae-Dong;Park, Byung-Kyu;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.408-413
    • /
    • 2001
  • Numerical analysis on the three-dimensional laminar flows (Re=1000) and heat transfer in a rectangular channel with punched longitudinal vortex generator have been conducted to explore the heat transfer enhancement and the combined effect of the angle of attack ${\alpha}$ and the lovour angle ${\beta}$. Rectangular winglets have been used as vortex generators. Velocity and temperature fields and spanwise averaged Nu and friction factor were presented. Enhancement of heat transfer and flow loss penalty are evidenced. The results show performance characteristics allowing a reduction in heat transfer surface area of 62% for fixed heat duty and for fixed pumping power compared with that of channel flow without vortex generator. However, adding lovour angle to the vortex generator shows no positive effect on the heat transfer enhancement.

  • PDF

Experiments on Condensation Heat Transfer Characteristics and Flow Regime Inside Microfin Tubes (마이크로핀관내 유동 양식과 응축 열전달 특성 연구)

  • 한동혁;이규정
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.602-611
    • /
    • 2001
  • Experiments on the condensation heat transfer characteristics inside a smooth and a microfin tube with R410A/R22 are performed in this study. The test tubes 7/9.52 mm in outside diameters and 3m in length are used. Varying the mass flux of the refrigerant and the condensation temperatures, the average heat transfer coefficients and pressure drop are investigated. Most flows in this study are in the annular and/or wavy flow regime. It is shown that the heat transfer is enhanced and the pressure drops are larger in the microfin tube than the smooth tube. From the heat transfer enhancement coefficients and the pressure drops, it is found that the high heat transfer enhancement factors are obtained in the range of small mass flux while the penalty factors are almost equal. Experiments results show that average heat transfer coefficients of R410A is larger than that of R22 and pressure drop of R410A is less than R22.

  • PDF

Pressure drop and heat transfer characteristics of a flat-plate solar collector with heat transfer enhancement device (열전달 향상 장치에 따른 평판형 태양열 집열기의 압력강하 및 열전달 특성)

  • Ahn, Sung-Hoo;Shin, Jee-Young;Son, Young-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.453-460
    • /
    • 2013
  • The surface roughness and heat transfer enhancement devices are known to increase the performance of a flat plate soar collector. This study includes the experiments on the effect of the several heat transfer enhancement devices inserted in duct to simulate the flat-plate solar collector. Experiment was basically at a constant heat flux on the upper duct wall. Inserted heat transfer enhancement devices are Chamfered rib $10^{\circ}$, Chamfered rib $20^{\circ}$, Rib & Groove and Rib & Dimple. Reynolds number is in the range of 2,300 to 22,000 which corresponds to turbulent regime. With the heat transfer enhancement devices, heat transfer would increase by the secondary flow and the increase of the heat transfer area. Pressure drop also increases with the insertion of the enhancement devices. Rib & Dimple model is the best in heat transfer enhancement, however, Chamfered rib $10^{\circ}$ model is the lowest in the pressure drop. Considering the heat transfer enhancement simultaneously with low pressure drop increase, performance factor was the best for the Chamfered rib $10^{\circ}$.

Characteristics of Heat Transfer and Pressure Drop for Spirally Indented Tubes with Wire Coil Inserts (와이어 코일이 삽입된 나선형 내면가공관의 열전달 및 압력강하 특성)

  • Choi, In-Su;Park, Byung-Duck;Nam, Sang-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.395-401
    • /
    • 2001
  • The characteristics of heat transfer and pressure drop through tubes has been investigated experimentally for a compound heat transfer enhancement. The test tubes were spirally indented tubes with wire coil inserts which had a various combinations of pitch and helix angles. Pure water was used as working fluids for the experiments, Heat transfer coefficients and friction factors of the test tubes were evaluated from the values of measured temperatures, flow rates and pressure drops. An performance evaluation was performed to find an optimal combination of spirally indented tubes with wire coil inserts. When the helix angle of wire coil insert are $71^{\circ}-72^{\circ}$, the best heat transfer enhancement was shown. The friction factor was 9 - 13 times higher than those in smooth tubes, and the heat transfer was enhanced a maximum of 500%.

  • PDF

Effect of Chip Spacing in a Multichip Module on the Heat Transfer for Paraffin Slurry Flow

  • Choi, Min-Goo;Cho, Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.997-1004
    • /
    • 2000
  • The experiments were conducted by using water and paraffin slurry to investigate the effect of a chip spacing in the multichip module on the cooling characteristics from an in-line $4{\times}3$ array of discrete heat sources which were flush mounted on the top wall of a channel. The experimental parameters were chip spacing in a multichip module, heat flux of simulated VLSI chip, mass fraction of paraffin slurry, and channel Reynolds number. The removable heat flux at the same chip surface temperature decreased as the chip spacing decreased at the first and fourth rows. The local heat transfer coefficients for the paraffin slurry were larger than those for water, and the chip spacing on the local heat transfer coefficients for paraffin slurry influenced less than that for water. The enhancement factor for paraffin slurry showed the largest value at a mass fraction of 5% regardless of the chip spacing, and the enhancement factors increased as the chip spacing decreased. This means that the paraffin slurry is more effective than water for cooling of the highly integrated multichip module.

  • PDF

An Experimental Study on Enhancement of Laminar Flow Heat Transfer in a Circular Pipe with Inserts (삽입물에 의한 관내 층류열전달 증진에 관한 실험적 연구)

  • 권영철;장근선;정지환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.667-673
    • /
    • 2000
  • In order to understand the laminar flow heat transfer enhancement by the swirl flow, the effects of heat transfer in a circular pipe with a twisted tape insert were investigated experimentally. In the present study, the uniform heat flux condition was considered. The laminar heat transfer correlations were developed using the least-square-fit from the surface temperature distribution of an electrically-heated pipe and flow property data. Average Nusselt number correlations with the twisted tape insert were expressed as a function of swirl parameter, Reynolds number and Prandtl number. In the case of the twisted ratio y = 6.05, the mean Nusselt number increased approximately 500% and the friction factor increased approximately 300%, compared to the case of the empty pipe, respectively.

  • PDF

A Study on the Drag Reduction Effect and Heat Transfer Enhancement of Non ionized Surfactant and Water Mixture in a Circular Pipe Flow (비이온계 계면활성제 첨가수에 대한 관내 유동저항 감소 및 열전달 촉진에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.552-557
    • /
    • 2007
  • This paper has dealt with the effect of non ionized surfactant and water mixture on drag reduction and heat transfer enhancement in a circular pipe flow with experimentally. The test section was consisted of stainless steel pipe with inside diameter of 16mm. The wire coil was used to increase heat transfer in a pipe and the on ionized surfactant(Oleyl Dihydroxyethyl Amino Oxide, ODEAO) was used to reduce the drag force of water mixture with surfactant. The main parameters of this experiment were diameter and pitch of wire coil and the ratio of test section length and horizontal wire coil length. In this experiment, the acquired results were 1) Drag reduction effect existed in this ODEAO-water mixture, 2) Friction factor and heat transfer were increased with insertion the heat transfer enhancement coil, 3) With increasing of pitch ratio, heat transfer was decreased, and 4) Heat transfer was decreased by the decreasing of inserting coil diameter.

Heat Transfer Enhancement by the Combined Effect of Louver Angle and Angle of Attack of Vertex Generator (와류발생기의 충돌각과 루버각의 상호작용에 의한 열전달촉진)

  • 박병규;정재동;이준식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.477-484
    • /
    • 2002
  • A numerical investigation of the performance of the plate heat exchanger with rectangular winglet is conducted to examine the combined effect of vortex generator and louver fins. Velocity and temperature fields and spanwise averaged Nu and friction factor are presented. Enhancement of heat transfer and flow loss penalty is evident. A Parametric study of three factors (Re, angle of attack and louver angle) with levels of 5 (Re= 300, 500, 700, 900, 1100), 4($\alpha=15^{\circ}, 30^{\circ}, 45^{\circ}, 90^{\circ},$), and 4($\beta=0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}$), respectively, indicates the performance defined by the ratio of heat transfer enhancement to flow loss penalty shows monotonic behavior for each parameter alone but the interactions between parameters is found to be considerable effect on the performance of heat exchanger and should be considered in design. The effect of stamping is also examined.

Study on Laminar Heat Transfer Enhancement by Twisted-Inserts

  • Kwon, Young-Chel;Chang, Keun-Sun;Jeong, Ji-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.36-43
    • /
    • 2001
  • In order to understand the laminar heat transfer enhancement by swirl flow, the effects of heat transfer in a circular pipe with twisted inserts are investigated experimentally. In the present study, a uniform heat flux condition is considered. Laminar heat transfer correlations are developed using least square fit method from surface temperature distributions of an electrically-heated pipe and flow properties. Average Nusselt number correlations with twisted inserts are expressed as a function of swirl parameter, Reynolds number and prand시 number. When the twisted ratio is 6.50, mean Nusselt number and friction factor increase by approximately 500% and 300%, respectively, compared with the values for a pipe without inserts.

  • PDF