• 제목/요약/키워드: Heat storage tank

검색결과 294건 처리시간 0.028초

Overview of separate effect and integral system tests on the passive containment cooling system of SMART100

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hong Hyun Son;Jin Su Kwon;Hwang Bae;Hyun-Sik Park;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1066-1080
    • /
    • 2024
  • SMART100 has a containment pressure and radioactivity suppression system (CPRSS) for passive containment cooling system (PCCS). This prevents overheating and over-pressurization of a containment through direct contact condensation in an in-containment refueling water storage tank (IRWST) and wall condensation in a CPRSS heat exchanger (CHX) in an emergency cool-down tank (ECT). The Korea Atomic Energy Research Institute (KAERI) constructed scaled-down test facilities, SISTA1 and SISTA2, for the thermal-hydraulic validation of the SMART100 CPRSS. Three separate effect tests were performed using SISTA1 to confirm the heat removal characteristics of SMART100 CPRSS. When the low mass flux steam with or without non-condensable gas is released into an IRWST, the conditions for mitigation of the chugging phenomenon were identified, and the physical variables were quantified by the 3D reconstruction method. The local behavior of the non-condensable gas was measured after condensation inside heat exchanger using a traverse system. Stratification of non-condensable gas occurred in large tank of the natural circulation loop. SISTA2 was used to simulate a small break loss-of-coolant accident (SBLCOA) transient. Since the test apparatus was a metal tank, compensations of initial heat transfer to the material and effect of heat loss during long-term operation were important for simulating cooling performance of SMART100 CPRSS. The pressure of SMART100 CPRSS was maintained below the design limit for 3 days even under sufficiently conservative conditions of an SBLOCA transient.

TRNSYS를 이용한 Borehole 방식 태양열 계간축열 시스템의 성능에 관한 연구 (A Study on Performance of Seasonal Borehole Thermal Energy Storage System Using TRNSYS)

  • 박상미;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제38권5호
    • /
    • pp.37-47
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a glass greenhouse was analyzed numerically. For this study, the gardening 16th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And, the heating load of the glass greenhouse selected was 576 GJ. BTES (Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modeling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump, controller. As a result of the analysis, the energy of 928 GJ from the flat plate solar collector was stored into BTES system and 393 GJ of energy from BTES system was extracted during heating period, so that it was confirmed that the thermal efficiency of BTES system was 42% in 5th year. Also since the heat supplied from the auxiliary boiler was 87 GJ in 5th year, the total annual heating demand was confirmed to be mostly satisfied by the proposed system.

LPG소형저장탱크 BLEVE 발생 시점 예측 툴 개발 (Development of a Tool for Predicting the Occurrence Time of BLEVE in Small LPG Storage Tanks)

  • 채충근;이재훈;채승빈;김용규;한신탁
    • 한국안전학회지
    • /
    • 제35권4호
    • /
    • pp.74-83
    • /
    • 2020
  • In Korea, about 110,000 LPG small storage tanks of less than three tons have been installed in restaurants, houses and factories, and are used as LPG supply facilities for cooking, heating and industrial use. In the case of combustible liquefied gas storage tanks, the tank may rupture due to the temperature increase of the tank steel plate (approximately 600℃) even when the safety valve is operating normally, causing large-scale damage in an instant. Therefore, in the event of a fire near the LPG small storage tank, it is necessary to accurately predict the timing of the BLEVE(Boiling Liquid Expanding Vapour Explosion) outbreak in order to secure golden time for lifesaving and safely carry out fire extinguishing activities. In this study, we have first investigated the results of a prior study on the prediction of the occurrence of BLEVE in the horizontal tanks. And we have developed thermodynamic models and simulation program on the prediction of BLEVE that can be applied to vertical tanks used in Korea, have studied the effects of the safety valve's ability to vent, heat flux strength of external fires, size of tanks, and gas remaining in tanks on the time of BLEVE occurrence and have suggested future utilization measures.

PILOT LNG저장탱크의 화재안전성 평가에 관한 연구 (Study on the Fire Safety Estimation for a Pilot LNG Storage Tank)

  • 고재선;김효
    • 한국화재소방학회논문지
    • /
    • 제18권3호
    • /
    • pp.57-73
    • /
    • 2004
  • Pilot LNG Tank에서 LNG가 누출되어 화재가 발생할 경우의 정량적 안전성 평가를 고장수목법을 이용하여 4가지 형태의 주요 시나리오를 도출하고 이에 대한 분석을 수행하였다. 첫째 방출관에서 누출할 경우에 특정 Low Flammable Limit(LFL)반경은 형성하지 않았으며, 둘째는 탱크파손으로 인한 LNG 유출이라는 최악의 시나리오 분석을 수행하였고, 그 결과를 살펴보면 총 누출량이 같더라도 시간에 따라 여러 가지 확산범위가 나타남을 확인할 수 있었다. 셋째는 inlet/outlet파이프의 손상으로 인한 누출로 10달과 타분 두 경우에 대해 분석하였으나, 각각의 경우 LFL의 반경은 큰 차이를 보이지 않았다. 따라서, 이와 같은 LNG누출 사고의 경우 초기 방출량의 크기가 확산의 주요 인자임을 알 수 있었다. 넷째는 방류둑에서 LNG배관이 파손될 경우 LFL의 크기를 산출하였다. 한편 복사열 및 불꽃의 크기에 대한 피해결과 분석을 동시에 수행하였다.

공조시스템용 지열히트펌프의 실증평가에 관한 연구 (In-situ Performance Evaluation of a Ground Source Heat Pump for an Air Conditioning System)

  • 박윤철;박성구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.66-72
    • /
    • 2008
  • In this study, the ground source heat pump was installed at a research center in Jeju Island to verify the performance of the system and to give an information for a economic feasibility. The performance test was conducted until the heat storage tank temperature reached at $5^{\circ}C$ from $50^{\circ}C$ in the cooling operation, and until the storage temperature goes up to $50^{\circ}C$ from $10^{\circ}C$ in the heating mode. As results, the system performance shows that $2.2{\sim}3.5$ for the cooling operation and $2.5{\sim}3.5$ for heating operation. It is found that the underground is good heat source for the heat pump with $3{\sim}10^{\circ}C$ variation range. The ground source heat pump could be connected one of air conditioning system without any problem in system performance. Based on the economic analysis, the initial cost for the ground source heat pump will be compensated after 4 years operation. If the system runs 20 years, approximately 300 million Won will be saved when the air conditioning system adapt the ground source heat pump based on Life Cycle Cost analysis.

태양열이용 하이브리드 난방 열펌프시스템 (The hybrid heat pump with solar energy for heating)

  • 김지영;고광수;강병찬;박윤철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.173-178
    • /
    • 2005
  • Recently. we interested in renewable energy due to cost increase of the crude oil, etc. In this study solar assisted hybrid heat pump system that uses the solar heat and air as heat source analyzed by experimentally.'rho system could runs at dual mode. One is thermal storage mode of solar energy at day time and the other is heat pump mode with low temperature air as heat source at night time. In case of setting temperature over the limited range. high temperature water heated at the solar energy collecting tubes supplied to the storage tank. As results. it is founded that the heat pump performance Is higher than general heat pump which using the only air as a heat source. The developed system could be used as main healing equipment for the panel heating for the residential house.

  • PDF

추진제탱크 얼리지 해석을 위한 기본모델 (Basic Model for Propellant Tank Ullage Calculation)

  • 권오성;조남경;조인현
    • 항공우주기술
    • /
    • 제9권1호
    • /
    • pp.125-132
    • /
    • 2010
  • 추진제가 배출되는 동안 추진제탱크를 적정 압력으로 유지하기 위해 필요한 가압가스의 질유량 및 총소모량을 파악하는 것은 가압제어시스템의 설계 및 가압제 저장탱크의 무게를 산출하는데 있어 매우 중요하다. 특히 극저온 추진제탱크의 경우 얼리지 내부의 가압가스는 외부와의 열전달에 의해 비체적이 감소하므로 더욱 많은 추진제탱크의 압력을 유지하기 위해 더 많은 가압가스를 필요로 한다. 이에 추진제탱크 얼리지 해석을 위한 기본모델을 만들어 얼리지 내부와 탱크벽면의 온도분포, 가압가스 소모량, 얼리지 내부에서 유입된 가압가스의 에너지 분포를 예측하였다. 현재 시험을 통한 프로그램의 수정보완이 진행되었으나, 본 자료에서는 기본적인 해석모델의 설명에 중점을 두었다.

제로카본 그린홈 구현을 위한 하이브리드 열공급 시스템의 열성능 분석 (Thermal Performance Analysis of Hybrid heat Supply System for Zero Carbon Green Home)

  • 주홍진;이경호;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.53-59
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000kcal/hr, a $0.15m^3$ hot water storage tank for space heating, a evacuated tubular solar collector $3.74m^2$ of aperture area at the $20^{\circ}$ install angle, a $0.3m^3$ hot water storage tank. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

Thermal Performance of the Microencapsulated PCM

  • Lee, Hyo-Jin;Lee, Jae-Goo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권1호
    • /
    • pp.31-39
    • /
    • 2002
  • Microencapsulated pcm (MPCM) particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane ($C_14$$H_30$, $T_m$=5.5$^{\circ}C$) is capsulated in the core, coated with the melamine for their surface. The size of particles is well-controlled under 10$\mu$m in the process of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentractions of slurries are prepared for 20 wt%, 30 wt%, and 40 wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose flow rates are varied by 125 cc/min, 250 cc/min, and 500 cc/min. However, MPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MPCM particles restrict their heat transfer in terms of natural convection and conduction to them.